ABCC7 p.Tyr569*
ClinVar: |
c.1707T>A
,
p.Tyr569*
?
, not provided
c.1706A>G , p.Tyr569Cys ? , not provided c.1705T>C , p.Tyr569His ? , not provided c.1705T>G , p.Tyr569Asp ? , not provided |
CF databases: |
c.1705T>G
,
p.Tyr569Asp
D
, CF-causing ; CFTR1: Y569D was identified by direct DNA sequencing. The mutation was found in three Pakistani patients, presumed to be unrelated; all were from consanguineous partnerships and all homozygous for the mutation. 60 non-[delta]F508 chromosomes, of which 12 were Pakistani in origin, were negative for Y569D
c.1705T>C , p.Tyr569His (CFTR1) D , This missense mutation was detected by DGGE and identified by sequence analysis. This substitution would result in a histidine at position 569. The mutation was found on a haplotype A in a young [delta}F508 heterozygous French patient. c.1706A>G , p.Tyr569Cys (CFTR1) ? , The mutation was detected by SSCP analysis, followed by direct sequencing of amplified DNA using the primers 5'-GTGAATCGATGTGGTGACCA-3' and 5'-CTATGATGGGACAGTCTG-3'. It can not be detected by restriction enzyme analysis. The mutation was seen in a girl from the Republic of Croatia, whose other CF chromosome carries the [delta]F508 mutation. The Y569C mutation was not found among 84 CF (17[delta]F508) and among 12 normal chromosomes. |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Spectrum of CFTR mutations in cystic fibrosis and ... Hum Mutat. 2000;16(2):143-56. Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD
Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France.
Hum Mutat. 2000;16(2):143-56., [PMID:10923036]
Abstract [show]
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
109 h M1K, K14X, W19X, 211delG, G27E, R31C, 237insA, 241delAT, Q39X, 244delTA, 296+2T>C, 297-3C>T, W57X+F87L, 306delTAGA, P67L, A72D, 347delC, R75Q, 359insT, 394delT, 405+4A>G, Q98R, 457TAT>G, R117H+5T, R117H+I1027T, R117L, R117P, H139R, A141D, M152V, N186K, D192N, D192del, E193X, 711+1G>A, 711+3A>G, 712-1G>T, L206F, W216X, C225R, Q237E, G241R, 852del22, 876-14del12, 905delG, 993del5, E292K, Y304X, F311del, 1161delC, R347L, R352Q, W361R, 1215delG, S364P, S434X, D443Y, S466X, C491R, T501A, I506T, F508C, I507del+F508C, F508del+L467F, 1774delCT, R553G, 1802delC, 1806delA, A559E, Y563N, 1833delT, Y569C, Y569H, Y569X, G576X, G576A, T582I, 1898+3A>G+186-13C>G, 1918delGC, R600G, L610S, G628R, 2043delG, 2118del4, E664X, 2174insA, Q689X, K698R, K716X, L732X, 2347delG, 2372del8, R764X, 2423delG, S776X, 2634insT, 2640delT, C866Y, 2752-1G>T, W882X, Y913C, V920M, 2896insAG, H939D, H939R, D979V, D985H, D993Y, 3120G>A, I1005R, 3195del6, 3293delA, 3320ins5, W1063X, A1067T, 3359delCT, T1086I, W1089X, Y1092X+S1235R, W1098X, E1104X, R1128X, 3532AC>GTA, 3548TCAT>G, M1140del, 3600G>A, R1162L, 3667ins4, 3732delA+K1200E, S1206X, 3791delC, S1235R+5T, Q1238R, Q1238X, 3849+4A>G, T1246I, 3869insG, S1255P, R1283K, F1286S, 4005+1G>T, 4006-8T>A, 4015delA, N1303H, N1303I, 4172delGC, 4218insT, 4326delTC, Q1382X, 4375-1C>T, 4382delA, D1445N, CF40kbdel4-10, Cfdel17b.
X
ABCC7 p.Tyr569* 10923036:109:610
status: NEW[hide] Neonatal screening for cystic fibrosis: result of ... Hum Genet. 1995 Nov;96(5):542-8. Ferec C, Verlingue C, Parent P, Morin JF, Codet JP, Rault G, Dagorne M, Lemoigne A, Journel H, Roussey M, et al.
Neonatal screening for cystic fibrosis: result of a pilot study using both immunoreactive trypsinogen and cystic fibrosis gene mutation analyses.
Hum Genet. 1995 Nov;96(5):542-8., [PMID:8530001]
Abstract [show]
We have evaluated a two-tier neonatal cystic fibrosis (CF) screening of immunoreactive trypsinogen (IRT) followed by CFTR gene mutation analysis using a systematic scanning of exons 7, 10, and 11, and, if necessary, by direct DNA sequencing. Over an 18-month period we screened 32,300 neonates born in the western part of Britanny. The first tier, involving IRT screening at 3 days of age, utilizes a low elevation of the trypsinogen level (600 ng/ml), which is highly sensitive. The second tier, which corresponds to the exhaustive screening for mutations in three exons of the gene, is highly specific for this population (Britanny). The false positive rate is very low, and no false negatives have been reported to date. This strategy has allowed the identification of five novel alleles (V322A, V317A, 1806 del A, R553G, G544S).
Comments [show]
None has been submitted yet.
No. Sentence Comment
82 {17bi DI507 [ Y569X W846X 2789+5G->A ,' $492F i ] i I G551D 2622+1 G->A Y1092X 1717-1 G->A E827X A1067T G542X 2183 AA->G R1066H R560K 2184 ins A 3320,ins 5 R553G R1070W 1806 del A & 4005+1G->A W1282X ] i "- Exons Fig.2 Distribution of the different mutations (except AF508) of the CFTR gene in Brittany Table 1 Mutations and genotypes in newborns Genotypes of newborns Number Sweat test AF508/AF508 7 + > 90 AF508/1806 del A 1 + > 90 R553G/G551D 1 Borderline (60) AF508/G551D 1 + > 90 AF508/R1070W 1 40 AF508/G542X 1 + > 90 AF508/G149R 1 45 Total 13 Mutations found in heterozygote newborns AF508 31 R560K 1 1078 del T 1 G544S l G542X 1 V317A 1 R347H 1 V322A 1 Total 38 gene.
X
ABCC7 p.Tyr569* 8530001:82:14
status: NEW