ABCB1 p.His61Ala
Predicted by SNAP2: | A: D (59%), C: N (57%), D: D (85%), E: D (85%), F: D (85%), G: D (75%), I: D (80%), K: D (85%), L: D (71%), M: D (85%), N: N (82%), P: D (91%), Q: D (75%), R: D (85%), S: N (66%), T: N (66%), V: D (80%), W: D (91%), Y: D (85%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, I: D, K: D, L: D, M: D, N: N, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] New light on multidrug binding by an ATP-binding-c... Trends Pharmacol Sci. 2006 Apr;27(4):195-203. Epub 2006 Mar 20. Shilling RA, Venter H, Velamakanni S, Bapna A, Woebking B, Shahi S, van Veen HW
New light on multidrug binding by an ATP-binding-cassette transporter.
Trends Pharmacol Sci. 2006 Apr;27(4):195-203. Epub 2006 Mar 20., [PMID:16545467]
Abstract [show]
ATP-binding-cassette (ABC) multidrug transporters confer multidrug resistance to pathogenic microorganisms and human tumour cells by mediating the extrusion of structurally unrelated chemotherapeutic drugs from the cell. The molecular basis by which ABC multidrug transporters bind and transport drugs is far from clear. Genetic analyses during the past 14 years reveal that the replacement of many individual amino acids in mammalian multidrug resistance P-glycoproteins can affect cellular resistance to drugs, but these studies have failed to identify specific regions in the primary amino acid sequence that are part of a defined drug-binding pocket. The recent publication of an X-ray crystallographic structure of the bacterial P-glycoprotein homologue MsbA and an MsbA-based homology model of human P-glycoprotein creates an opportunity to compare the original mutagenesis data with the three-dimensional structures of transporters. Our comparisons reveal that mutations that alter specificity are present in three-dimensional 'hotspot' regions in the membrane domains of P-glycoprotein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
58 Although mutation of only one of these residues (L975A, V981A and F983A) has no effect on the phenotype of the protein [20], double mutations either completely inhibit (V981A/F983A and L975A/V981A) or cause 50% inhibition (L975A/F983A) of Table 1.
X
ABCB1 p.His61Ala 16545467:58:175
status: NEW59 Published mutations in human and murine P-glycoprotein that alter drug transport in cells Location of mutation Mutation Refs Mutation Refs Mutation Refs Transmembrane helices H61A and others [14] I214L [60] L868W [59] G64R [15] P223A [65] I936A [21] L65R [15] S224P [60] F938A [21] Q139[H/P/R] [60] I306R [18] S939[A/C/T/Y/W/D/F] [21,22] G141V [17] F335A [16] T941A [21] G185V [61,62] V338A [66] Q942A [21] I186N [61] G338A [67,68] A943G [21] G187V [17] A339P [67,68] Y946A [21] G187E [60] G341A [66] S948A [21] A192T [60] S344[A/T/C/Y] [66] Y949A [21] F200L [60] N350I [19] C952A [21] F204S [60] P709A [65] F953A [21] R206L [60] G830V [17] L975A [20] W208G [60] I837L [23] F978A [16] K209E [60] N839I [23] V981A [20] L210I [60] I862F [19] F983A [20] T211P [60] L865F [19] F978A [16] V213A [60] P866A [65] N988D [59] Intracellular domain T169I [60] K177I [60] G288V [17] R170L [60] E180G [60] A931T [19] L171P [60] G181R [60] F934A [21] T172P [60] G183D [60] G935A [21] S176P [60] D184N [60] NBD D555N [63] K1076M [69] E1197Q [64] D558N [64] D1093N [64] D1203N [64] D592N [64] E1125Q [64] D1237N [64] E604Q [64] S1173A [70] E1249Q [64] Review TRENDS in Pharmacological Sciences Vol.27 No.
X
ABCB1 p.His61Ala 16545467:59:175
status: NEW