ABCC2 p.Lys961Arg
Predicted by SNAP2: | A: N (78%), C: N (66%), D: N (61%), E: N (78%), F: D (59%), G: N (72%), H: N (87%), I: N (72%), L: N (72%), M: N (66%), N: N (87%), P: N (57%), Q: N (93%), R: N (97%), S: N (87%), T: N (87%), V: N (72%), W: N (57%), Y: N (66%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: D, H: N, I: D, L: D, M: D, N: N, P: D, Q: N, R: N, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Role of pharmacogenetics of ATP-binding cassette t... Pharmacol Ther. 2006 Nov;112(2):457-73. Cascorbi I
Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs.
Pharmacol Ther. 2006 Nov;112(2):457-73., [PMID:16766035]
Abstract [show]
Interindividual differences of drug response are an important cause of treatment failures and adverse drug reactions. The identification of polymorphisms explaining distinct phenotypes of drug metabolizing enzymes contributed in part to the understanding of individual variations of drug plasma levels. However, bioavailability also depends on a major extent from the expression and activity of drug transport across biomembranes. In particular efflux transporters of the ATP-binding cassette (ABC) family such as ABCB1 (P-glycoprotein, P-gp), the ABCC (multidrug resistance-related protein, MRP) family and ABCG2 (breast cancer resistance protein, BCRP) have been identified as major determinants of chemoresistance in tumor cells. They are expressed in the apical membranes of many barrier tissue such as the intestine, liver, blood-brain barrier, kidney, placenta, testis and in lymphocytes, thus contributing to plasma, liquor, but also intracellular drug disposition. Since expression and function exhibit a broad variability, it was hypothesized that hereditary variances in the genes of membrane transporters could explain at least in part interindividual differences of pharmacokinetics and clinical outcome of a variety of drugs. This review focuses on the functional significance of single nucleotide polymorphisms (SNP) of ABCB1, ABCC1, ABCC2, and ABCG2 in in vitro systems, in vivo tissues and drug disposition, as well as on the clinical outcome of major indications.
Comments [show]
None has been submitted yet.
No. Sentence Comment
882 0.01 Exon 2 56 C>T P19L 0.01 Exon 3 234 A>G synonymous 0.01 Exon 3 299 G>A R100Q 0.01 Exon 7 842 G>A S281N 0.01 Exon 10 1249 G>A V417I 0.12 (0.21) Exon 10 1457 C>T T486I 0.03 Exon 18 2302 C>T R768W 0.01 (0.00) Exon 18 2366 C>T S789F 0.01 (0.00) slightly elevated activity, lower expressionb Exon 20 2647 G>A D883N 0.01 Exon 21 2882 A>G K961R 0.01 Exon 22 2934 G>A synonymous 0.05 Exon 22 3039 C>T synonymous 0.01 Exon 22 3057 G>T Q1019H 0.01 Exon 24 3321 G>T synonymous 0.01 Exon 25 3521 G>A R1174H 0.01 Exon 25 3563 T>A V1188E 0.01 Exon 26 3732 C>T N1244K 0.01 Exon 28 3972 C>T synonymous 0.21 (0.34) Exon 29 4100 C>G S1367C 0.01 Exon 30 4290 G>T synonymous 0.01 Exon 31 4348 G>A A1450T 0.01 (0.00) decreased activity, lower expressionb Exon 31 4488 C>T synonymous 0.01 Exon 32 4544 G>A C1515Y 0.01 a Haenisch et al. (in press).
X
ABCC2 p.Lys961Arg 16766035:882:336
status: NEW[hide] Pharmacogenomics of MRP transporters (ABCC1-5) and... Drug Metab Rev. 2008;40(2):317-54. Gradhand U, Kim RB
Pharmacogenomics of MRP transporters (ABCC1-5) and BCRP (ABCG2).
Drug Metab Rev. 2008;40(2):317-54., [PMID:18464048]
Abstract [show]
Elucidation of the key mechanisms that confer interindividual differences in drug response remains an important focus of drug disposition and clinical pharmacology research. We now know both environmental and host genetic factors contribute to the apparent variability in drug efficacy or in some cases, toxicity. In addition to the widely studied and recognized genes involved in the metabolism of drugs in clinical use today, we now recognize that membrane-bound proteins, broadly referred to as transporters, may be equally as important to the disposition of a substrate drug, and that genetic variation in drug transporter genes may be a major contributor of the apparent intersubject variation in drug response, both in terms of attained plasma and tissue drug level at target sites of action. Of particular relevance to drug disposition are members of the ATP Binding Cassette (ABC) superfamily of efflux transporters. In this review a comprehensive assessment and annotation of recent findings in relation to genetic variation in the Multidrug Resistance Proteins 1-5 (ABCC1-5) and Breast Cancer Resistance Protein (ABCG2) are described, with particular emphasis on the impact of such transporter genetic variation to drug disposition or efficacy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
101 Several molecular defects in MRP2 have been suggested to result in DJS including those which produce deficient protein maturation (Hashimoto et al., 2002; Keitel et al., 2003), proteasomal degradation (Keitel, 2003), impaired membrane sorting (Hashimoto et al., 2002; Mor-Cohen et al., 2001), loss in transport activity (Mor-Cohen et al., 2001), Figure 2 Predicted membrance topology of MRP2 (ABCC2) based on hydrophobicity analysis. Locations of the non-synonymous polymorphisms are indicated with arrows. See Table 2 for allele frequencies and description of funtional consequences. NH2 COOH NBD NBD in out Membrane Pro19Leu Phe39Tyr Arg100* Arg100Gln Ser281Asn Ser325* Asp333Gly Arg353His Arg412Gly Val417Ile Lys430Arg Thr486Ile Gly676Arg Trp709Arg Asn718Ser Ser789Phe Arg768Trp Asp833Asn Glu893Gln Leu927Arg Lys961Arg Tyr967* Phe981Leu Gln1019His Arg1066* Arg1150His Arg1100Cys Arg1100His Ile1137Phe Ile1173Phe Val1188Glu Arg1174His Arg1181Leu Asn1244Lys Thr1273Ala Pro1291Leu Lys1299Gln Arg1310* Ser1367Cys Gln1382Arg Arg1392del Met1393del Ala1450Thr Thr1476Met Cys1515Tyr MRP2 (ABCC2) NBD NBD Asp833Asn Glu893Gln Leu927Arg Lys961Arg Tyr967* NBD NBDNBD Asp833Asn Glu893Gln Leu927Arg Lys961Arg Tyr967* 325 Table2MRP2(ABCC2)singlenucleotidepolymorphisms.Location,allelefrequencyandfunctionaleffects. Positionin codingsequence Amino acidexchangeLocation Allelefrequency EffectNCBIIDReferenceAfCaJpothers 56C>TPro19LeuExon2--1[1]b -- 116T>APhe39TyrExon2--0[2]--rs927344 298C>TArg100*Exon3--[3]-DJS[3] 299G>AArg100GlnExon3--1[1]b -- 842G>ASer281AsnExon7-0[4]1[1]b -- 974C>GSer325*Exon8---Malayan[5]DJS[5] 998A>GAsp333GlyExon8--0[2]--rs17222674 1058G>AArg353HisExon9--0[2]--rs7080681 1271A>GArg412GlyExon10-[6]0[2]-DJS;Decreaseinmethotrexateelimination[6] 1249G>AVal417IleExon10-22[7]13[9]-lowermRNAand(protein)expressioninpreterm placenta[11] rs2273697 26[8]16[4]noeffectonRNAandproteinininduodenum[12] 19[10]noeffectonproteininliver[8] noeffectonconjugatedbilirubinlevelinserum[13] changesinlocalizationinneuroepithelialtumors[14] possibleassociationwithtenofovir-inducedrenal proximaltubulopathy[15] 1289A>GLys430ArgExon10-4[16]0[2]-- 1457C>TThr486IleExon10-0[4]3[1]b -- 2026G>CGly676Arg--0[2]-DJS[17] 2125T>CTrp709Arg--0[2]-DJS[17] 2153A>GAsn718SerExon17-0[4]0[2]--rs3740072 2302C>TArg768TrpExon18-0[18]1[9]-DJS;deficientmaturationandimpairedsorting[19] 2366C>TSer789PheExon18-0[18]1[9]-lowerexpressionandmembranelocalization[20] noeffectonconjugatedbilirubinlevelinserum[13]/ heterozygous 2647G>AAsp883AsnExon20--1[1]b -- 2677G>CGlu893GlnExon20--0[2]--rs3740071 2780T>GLeu927ArgExon21-1[10]0[2]-- (Continued) Table2(Continued) Positionin codingsequence Aminoacid exchangeLocation Allelefrequency EffectNCBIIDReferenceAfCaJpothers 2882A>GLys961ArgExon21--1[1]b --- 2901C>ATyr967*Exon22--0[2]--rs17222547 2943C>GPhe981LeuExon22-2[21]0[2]-Noinfluenceonpravastatinkinetics[21] 3057G>TGln1019HisExon22--1[1]b -- 3196C>TArg1066*Exon23-[22]0[2]-DJS;truncatedprotein[22][23] 3298C>TArg1100CysExon24-1[10]0[2]-- 3299G>AArg1100HisExon24-1[10]0[2]-- 3449G>AArg1150HisExon25--0[2]Israeli[24]DJS;impairedtransportactivityintransfectedcells althoughnormalexpressionandlocalization[24] 3517A>TIle1173PheExon25--0[2]Israeli[24]DJS;impairedproteinmaturationandproteasomal degradation[25] lowexpression,mislocation,andimpairedtransport activityintransfectedcells[24] 3521G>AArg1174HisExon25-0[4]1[1]b -- 3542G>TArg1181LeuExon25-0[4]0[2]--rs8187692 3563T>AVal1188GluExon25-7[4]1[1]b -noeffectonnelfinaviraccumulationinPBMC[4],rs17222723 4[16]associatedwithanthracycline-induced cardiotoxicity[26] 6[8] 3732C>TAsn1244LysExon26--0[1]b -- 0[2] 3817A>GThr1273AlaExon27--0[2]--rs8187699 3872C>TPro1291LeuExon28--0[2]--rs17216317 3897A>CLys1299GlnExon28--0[2]--rs4148400 3928C>TArg1310*Exon28--0[2]-DJS[17,27] 4100C>GSer1367CysExon29--1[1]b -- 4145A>GGln1382ArgExon29--[28]-DJS;noeffectonmaturationorsorting,impaired substrate-inducedATPhydrolysis[19] 4175-80delArg1392delExon30--0[2]-DJS;deficientMRP2maturationandimpaired sortingtoapicalmembraneintransfectedcells[29] 327 4348G>AAla11450ThrExon31-0[18]1[9]-lowerexperssionandmembracelocalizationin transfectedcells[20] 4461C>TThr1476MetExon31-[30]1[2]-- 4544G>ACys1515TyrExon32-9[4]1[1]b -noeffectonnelfinaviraccumulationinPBMC[4]rs8187710 5[10]associatedwithanthracycline-induced cardiotoxicity[26] 4[16] 6[8] ReferencewithoutfrequencymeansthatSNPwasdetectedbutnofrequencydetermined.
X
ABCC2 p.Lys961Arg 18464048:101:812
status: NEWX
ABCC2 p.Lys961Arg 18464048:101:1129
status: NEWX
ABCC2 p.Lys961Arg 18464048:101:1188
status: NEW[hide] Pharmacogenetics of ATP-binding cassette transport... Methods Mol Biol. 2010;596:95-121. Cascorbi I, Haenisch S
Pharmacogenetics of ATP-binding cassette transporters and clinical implications.
Methods Mol Biol. 2010;596:95-121., [PMID:19949922]
Abstract [show]
Drug resistance is a severe limitation of chemotherapy of various malignancies. In particular efflux transporters of the ATP-binding cassette family such as ABCB1 (P-glycoprotein), the ABCC (multidrug resistance-associated protein) family, and ABCG2 (breast cancer resistance protein) have been identified as major determinants of chemoresistance in tumor cells. Bioavailability depends not only on the activity of drug metabolizing enzymes but also to a major extent on the activity of drug transport across biomembranes. They are expressed in the apical membranes of many barrier tissues such as the intestine, liver, blood-brain barrier, kidney, placenta, testis, and in lymphocytes, thus contributing to plasma, liquor, but also intracellular drug disposition. Since expression and function exhibit a broad variability, it was hypothesized that hereditary variances in the genes of membrane transporters could explain at least in part interindividual differences of pharmacokinetics of a variety of anticancer drugs and many others contributing to the clinical outcome of certain leukemias and further malignancies.
Comments [show]
None has been submitted yet.
No. Sentence Comment
190 0.01* (0.00) c. 56 C>T P19L 0.01* c. 234 A>G Synonymous 0.01* c. 299 G>A R100Q 0.01* c. 842 G>A S281N 0.01* c. 1249 G>A V417I 0.13 (0.21) c. 1446 C>G (0.01) c. 1457 C>T T486I 0.03* (0.00) c. 2302 C>T R768W 0.01 (0.00) c. 2366 C>T S789F 0.01 (0.00) c. 2647 G>A D883N 0.01* c. 2882 A>G K961R 0.01* c. 2934 G>A Synonymous 0.05* c. 3039 C>T Synonymous 0.01* c. 3057 G>T Q1019H 0.01* c. 3321 G>T Synonymous 0.01* c. 3521 G>A R1174H 0.01* c. 3542 G>T (0.001) c. 3561 G>A (0.00) c. 3563 T>A V1188E 0.01* (0.05) c. 3732 C>T N1244K 0.01* c. 3972 C>T Synonymous 0.22* (0.34) c. 4100 C>G S1367C 0.01* c. 4290 G>T Synonymous 0.01* c. 4348 G>A A1450T 0.01 (0.00) c. 4488 C>T Synonymous 0.01* c. 4544 G>A C1515Y 0.01* (0.04) association to cholestatic or mixed type hepatitis whereas -24T carriers exhibited more often hepatocellular-type hepatitis after intake of drugs or herbal remedies (96).
X
ABCC2 p.Lys961Arg 19949922:190:284
status: NEW[hide] The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 2007 Feb;453(5):643-59. Epub 2006 Jul 18. Nies AT, Keppler D
The apical conjugate efflux pump ABCC2 (MRP2).
Pflugers Arch. 2007 Feb;453(5):643-59. Epub 2006 Jul 18., [PMID:16847695]
Abstract [show]
ABCC2 is a member of the multidrug resistance protein subfamily localized exclusively to the apical membrane domain of polarized cells, such as hepatocytes, renal proximal tubule epithelia, and intestinal epithelia. This localization supports the function of ABCC2 in the terminal excretion and detoxification of endogenous and xenobiotic organic anions, particularly in the unidirectional efflux of substances conjugated with glutathione, glucuronate, or sulfate, as exemplified by leukotriene C(4), bilirubin glucuronosides, and some steroid sulfates. The hepatic ABCC2 pump contributes to the driving forces of bile flow. Acquired or hereditary deficiency of ABCC2, the latter known as Dubin-Johnson syndrome in humans, causes an increased concentration of bilirubin glucuronosides in blood because of their efflux from hepatocytes via the basolateral ABCC3, which compensates for the deficiency in ABCC2-mediated apical efflux. In this article we provide an overview on the molecular characteristics of ABCC2 and its expression in various tissues and species. We discuss the transcriptional and posttranscriptional regulation of ABCC2 and review approaches to the functional analysis providing information on its substrate specificity. A comprehensive list of sequence variants in the human ABCC2 gene summarizes predicted and proven functional consequences, including variants leading to Dubin-Johnson syndrome.
Comments [show]
None has been submitted yet.
No. Sentence Comment
139 Although all sequence variants associated with Dubin-Johnson syndrome result in the absence of a Table 3 Nucleotide sequence variants in the human ABCC2 gene (NM_000392) leading to amino acid changes in the ABCC2/MRP2 protein (NP_000383) Location Nucleotide changea Deduced effect on proteina Causing Dubin-Johnson syndromeb Predicted effect by PolyPhen databasec Experimentally proven functional consequence Average frequency of indicated nucleotide exchange in population NCBI SNP IDd and/or references Exon 2 c.56 C>Te p.P19L Probably damaging T: 0.007 [63] Exon 2 c.116 T>A p.F39Y Benign A: 0.010 rs927344 A: 0.008 rs17222603 Exon 3 c.298 C>T p.R100Xf DJS [154] Exon 3 c.299 G>Ae p.R100Q Possibly damaging A: 0.007 [63] Exon 7 c.736 A>C p.M246L Benign C: 0.002 rs8187667 C: 0.002 rs17222744 Exon 7 c.842 G>A p.S281N Benign A: 0.0060.056 [117] Exon 8 c.998 A>G p.D333G Possibly damaging G: 0.002 rs8187668 G: 0.004 rs17222674 Exon 9 c.1058 G>A p.R353H Benign A: 0.009 rs7080681 A: 0.014 rs17216205 Exon 9 c.1177 C>T p.R393W DJS Probably damaging [104, 112] Exon 10 c.1234 A>G p.R412G Probably damaging Deficient methotrexate transport function [56] Exon 10 c.1249 G>A p.V417I Benign None apparent [50] A: 0.163 rs2273697, [146] A: 0.158 rs17216184 A: 0.125 [62] A: 0.1830.312 [117] Exon 10 c.1457 C>T p.T486I Benign T: 0.002 rs8187670 T: 0.002 rs17222589 Exon 11 c.1483 A>G p.K495E Possibly damaging G: 0.002 rs8187672 G: 0.002 rs17222561 Exon 13 c.1686 T>G p.F562L Benign G: 0.002 rs8187673 G: 0.002 rs17216233 Exon 16 c.2009 T>C p.I670T Benign rs8187676 C: 0.006 rs17222632 Exon 16 c.2026 G>C p.G676R DJS Probably damaging [181] Exon 17 c.2125 T>C p.W709R DJS Probably damaging [111] Exon 17 c.2153 A>G p.N718S Possibly damaging rs3740072 Exon 17 c.2215 C>T p.L739F Probably damaging T: 0.006 [51] Exon 18 c.2302 C>T p.R768W DJS Probably damaging Deficient maturation and impaired sorting [47] T: 0.010 [62] [168, 180] Exon 18 c.2366 C>T p.S789F Probably damaging Reduced protein levels [50] T: 0.010 [62] Exon 19 c.2546 T>G p.L849R Benign G: 0.002 rs8187689 G: 0.006 rs17222617 Exon 20 c.2647 G>Ae p.D883N Benign A: 0.007 [63] Exon 20 c.2677 G>C p.E893Q Benign rs3740071 Exon 21 c.2882 A>Ge p.K961R Benign G: 0.007 [63] Exon 22 c.2901 C>A p.Y967Xf A: 0.002 rs8187683 A: 0.002 rs17222547 Exon 22 c.2944 A>G p.I982V Benign G: 0.002 rs8187684 G: 0.002 rs17222554 Exon 22 c.3057 G>Te p.Q1019H Benign T: 0.007 [63] Exon 23 c.3107 T>C p.I1036T Possibly damaging C: 0.002 rs8187685 C: 0.004 rs17216149 Exon 23 c.3188 A>G p.N1063S Benign G: 0.002 rs8187686 G: 0.002 rs17222540 Exon 23 c.3196 C>T p.R1066Xf DJS No ABCC2 protein in liver [134] Exon 25 c.3449 G>A p.R1150H DJS Probably damaging Deficient transport function A: 00.009 [117] Exon 25 c.3517 A>T p.I1173F DJS Probably damaging Deficient maturation and impaired sorting, deficient transport function T: 00.029 [117] [80, 117] Exon 25 c.3521 G>Ae p.R1174H Probably damaging A: 0.007 [63] Exon 25 c.3542 G>T p.R1181L Possibly damaging T: 0.039 rs8187692 T: 0.034 rs17222702 Exon 25 c.3563 T>A p.V1188E Benign A: 0.059 rs8187694 A: 0.059 rs17222723 Exon 26 c.3732 T>Ge p.N1244K Possibly damaging G: 0.014 [63] Exon 27 c.3817 A>G p.T1273A Benign G: 0.002 rs8187699 G: 0.004 rs17222582 Exon 27 c.3825 C>G p.Y1275Xf DJS No ABCC2 protein in liver [104] Exon 28 c.3872 C>T p.P1291L Possibly damaging T: 0.012 rs8187700 T: 0.010 rs17216317 Exon 28 c.3895 A>C p.K1299Q Benign rs4148400, [146] Exon 28 c.3928 C>T p.R1310Xf DJS [166] Exon 29 c.4100 C>Ge p.S1367C Possibly damaging G: 0.007 [63] Exon 29 c.4145 A>G p.Q1382R DJS Probably Deficient [47, 168] Table 3 (continued) Location Nucleotide changea Deduced effect on proteina Causing Dubin-Johnson syndromeb Predicted effect by PolyPhen databasec Experimentally proven functional consequence Average frequency of indicated nucleotide exchange in population NCBI SNP IDd and/or references functionally active ABCC2 protein from the canalicular membrane, their effects on the synthesis and function of the ABCC2 protein differ.
X
ABCC2 p.Lys961Arg 16847695:139:2202
status: NEW140 Although all sequence variants associated with Dubin-Johnson syndrome result in the absence of a Table 3 Nucleotide sequence variants in the human ABCC2 gene (NM_000392) leading to amino acid changes in the ABCC2/MRP2 protein (NP_000383) Location Nucleotide changea Deduced effect on proteina Causing Dubin-Johnson syndromeb Predicted effect by PolyPhen databasec Experimentally proven functional consequence Average frequency of indicated nucleotide exchange in population NCBI SNP IDd and/or references Exon 2 c.56 C>Te p.P19L Probably damaging T: 0.007 [63] Exon 2 c.116 T>A p.F39Y Benign A: 0.010 rs927344 A: 0.008 rs17222603 Exon 3 c.298 C>T p.R100Xf DJS [154] Exon 3 c.299 G>Ae p.R100Q Possibly damaging A: 0.007 [63] Exon 7 c.736 A>C p.M246L Benign C: 0.002 rs8187667 C: 0.002 rs17222744 Exon 7 c.842 G>A p.S281N Benign A: 0.0060.056 [117] Exon 8 c.998 A>G p.D333G Possibly damaging G: 0.002 rs8187668 G: 0.004 rs17222674 Exon 9 c.1058 G>A p.R353H Benign A: 0.009 rs7080681 A: 0.014 rs17216205 Exon 9 c.1177 C>T p.R393W DJS Probably damaging [104, 112] Exon 10 c.1234 A>G p.R412G Probably damaging Deficient methotrexate transport function [56] Exon 10 c.1249 G>A p.V417I Benign None apparent [50] A: 0.163 rs2273697, [146] A: 0.158 rs17216184 A: 0.125 [62] A: 0.1830.312 [117] Exon 10 c.1457 C>T p.T486I Benign T: 0.002 rs8187670 T: 0.002 rs17222589 Exon 11 c.1483 A>G p.K495E Possibly damaging G: 0.002 rs8187672 G: 0.002 rs17222561 Exon 13 c.1686 T>G p.F562L Benign G: 0.002 rs8187673 G: 0.002 rs17216233 Exon 16 c.2009 T>C p.I670T Benign rs8187676 C: 0.006 rs17222632 Exon 16 c.2026 G>C p.G676R DJS Probably damaging [181] Exon 17 c.2125 T>C p.W709R DJS Probably damaging [111] Exon 17 c.2153 A>G p.N718S Possibly damaging rs3740072 Exon 17 c.2215 C>T p.L739F Probably damaging T: 0.006 [51] Exon 18 c.2302 C>T p.R768W DJS Probably damaging Deficient maturation and impaired sorting [47] T: 0.010 [62] [168, 180] Exon 18 c.2366 C>T p.S789F Probably damaging Reduced protein levels [50] T: 0.010 [62] Exon 19 c.2546 T>G p.L849R Benign G: 0.002 rs8187689 G: 0.006 rs17222617 Exon 20 c.2647 G>Ae p.D883N Benign A: 0.007 [63] Exon 20 c.2677 G>C p.E893Q Benign rs3740071 Exon 21 c.2882 A>Ge p.K961R Benign G: 0.007 [63] Exon 22 c.2901 C>A p.Y967Xf A: 0.002 rs8187683 A: 0.002 rs17222547 Exon 22 c.2944 A>G p.I982V Benign G: 0.002 rs8187684 G: 0.002 rs17222554 Exon 22 c.3057 G>Te p.Q1019H Benign T: 0.007 [63] Exon 23 c.3107 T>C p.I1036T Possibly damaging C: 0.002 rs8187685 C: 0.004 rs17216149 Exon 23 c.3188 A>G p.N1063S Benign G: 0.002 rs8187686 G: 0.002 rs17222540 Exon 23 c.3196 C>T p.R1066Xf DJS No ABCC2 protein in liver [134] Exon 25 c.3449 G>A p.R1150H DJS Probably damaging Deficient transport function A: 00.009 [117] Exon 25 c.3517 A>T p.I1173F DJS Probably damaging Deficient maturation and impaired sorting, deficient transport function T: 00.029 [117] [80, 117] Exon 25 c.3521 G>Ae p.R1174H Probably damaging A: 0.007 [63] Exon 25 c.3542 G>T p.R1181L Possibly damaging T: 0.039 rs8187692 T: 0.034 rs17222702 Exon 25 c.3563 T>A p.V1188E Benign A: 0.059 rs8187694 A: 0.059 rs17222723 Exon 26 c.3732 T>Ge p.N1244K Possibly damaging G: 0.014 [63] Exon 27 c.3817 A>G p.T1273A Benign G: 0.002 rs8187699 G: 0.004 rs17222582 Exon 27 c.3825 C>G p.Y1275Xf DJS No ABCC2 protein in liver [104] Exon 28 c.3872 C>T p.P1291L Possibly damaging T: 0.012 rs8187700 T: 0.010 rs17216317 Exon 28 c.3895 A>C p.K1299Q Benign rs4148400, [146] Exon 28 c.3928 C>T p.R1310Xf DJS [166] Exon 29 c.4100 C>Ge p.S1367C Possibly damaging G: 0.007 [63] Exon 29 c.4145 A>G p.Q1382R DJS Probably Deficient [47, 168] Table 3 (continued) Location Nucleotide changea Deduced effect on proteina Causing Dubin-Johnson syndromeb Predicted effect by PolyPhen databasec Experimentally proven functional consequence Average frequency of indicated nucleotide exchange in population NCBI SNP IDd and/or references functionally active ABCC2 protein from the canalicular membrane, their effects on the synthesis and function of the ABCC2 protein differ.
X
ABCC2 p.Lys961Arg 16847695:140:2202
status: NEW[hide] Polymorphisms in the ABCC2 (cMOAT/MRP2) gene found... Drug Metab Dispos. 2002 Apr;30(4):363-4. Itoda M, Saito Y, Soyama A, Saeki M, Murayama N, Ishida S, Sai K, Nagano M, Suzuki H, Sugiyama Y, Ozawa S, Sawada Ji J
Polymorphisms in the ABCC2 (cMOAT/MRP2) gene found in 72 established cell lines derived from Japanese individuals: an association between single nucleotide polymorphisms in the 5'-untranslated region and exon 28.
Drug Metab Dispos. 2002 Apr;30(4):363-4., [PMID:11901087]
Abstract [show]
We found nucleotide variability in the 5'-upstream region and exonic sequences of a gene-encoding canalicular multispecific organic anion transporter/multidrug resistance-associated protein 2 (cMOAT/MRP2) by polymerase chain reaction-based sequencing using genomic DNA from 72 established cell lines derived from 72 Japanese individuals. Four single nucleotide polymorphisms (SNPs) were found in the 5'-untranslational region and 21 in the exonic regions. Of them, 14 were nonsynonymous SNPs. One deletion of seven consecutive adenines resulting in a frameshift variant was also found. Four SNPs, c-24t, g1249a (V417I), c2366t (S789F), and c3972t (I1324I), were the same as those recently reported. A strong association was found between c-24t (5'-untranslated region) and c3972t (exon 28), with the promoter activity of the former worth being compared.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 Location Substitution Genotype 72 Cell Linesa (48 Subjects)b Nucleotide Amino Acid w/w w/m m/m 5Ј-Flanking t-751a 71 1 0 5Ј-Flanking c-717t 71 1 0 5Ј-UTR c-24t 52 (31) 14 (16) 6 (1) 5Ј-UTR g-23a 70 2 0 Exon 2 c56t P19L 71 1 0 Exon 3 a234g L78L 71 1 0 Exon 3 g299a R100Q 71 1 0 Exon 7 g842a S281N 71 1 0 Exon 10 g1249a V417I 59 (37) 9 (10) 4 (1) Exon 10 c1457t T486I 69 2 1 Exon 18 c2302t R768W 72 (47) 0 (1) 0 (0) Exon 18 c2366t S789F 71 (47) 1 (1) 0 (0) Exon 20 g2647a D883N 71 1 0 Exon 21 a2882g K961R 71 1 0 Exon 22 g2934a S978S 66 5 1 Exon 22 c3039t T1013T 71 0 1 Exon 22 g3057t Q1019H 71 1 0 Exon 24 g3321t L1107L 71 1 0 Exon 25 g3521a R1174H 71 1 0 Exon 25 t3563a V1188E 71 1 0 Exon 26 t3732g N1244K 71 0 1 Exon 28 c3972t I1324I 49 (29) 14 (17) 9 (2) Exon 29 c4100g S1367C 71 1 0 Exon 30 g4290t V1430V 71 1 0 Exon 31 g4348a A1450T 72 (47) 0 (1) 0 (0) Exon 31 c4488t H1496H 71 1 0 Exon 32 g4544a C1515Y 71 1 0 UTR, untranslated region.
X
ABCC2 p.Lys961Arg 11901087:57:522
status: NEW