ABCB4 p.Gly1024Ala
Predicted by SNAP2: | A: N (61%), C: N (57%), D: D (59%), E: N (53%), F: D (53%), H: N (61%), I: N (53%), K: N (53%), L: N (53%), M: N (72%), N: N (66%), P: N (61%), Q: N (61%), R: N (57%), S: N (72%), T: N (61%), V: N (53%), W: D (59%), Y: D (53%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Novel resequencing chip customized to diagnose mut... Gastroenterology. 2007 Jan;132(1):119-26. Epub 2006 Oct 21. Liu C, Aronow BJ, Jegga AG, Wang N, Miethke A, Mourya R, Bezerra JA
Novel resequencing chip customized to diagnose mutations in patients with inherited syndromes of intrahepatic cholestasis.
Gastroenterology. 2007 Jan;132(1):119-26. Epub 2006 Oct 21., [PMID:17241866]
Abstract [show]
BACKGROUND & AIMS: Inherited syndromes of intrahepatic cholestasis commonly result from mutations in the genes SERPINA1 (alpha(1)-antitrypsin deficiency), JAG1 (Alagille syndrome), ATP8B1 (progressive familial intrahepatic cholestasis type 1 [PFIC1]), ABCB11 (PFIC2), and ABCB4 (PFIC3). However, the large gene sizes and lack of mutational hotspots make it difficult to survey for disease-causing mutations in clinical practice. Here, we aimed to develop a technological tool that reads out the nucleotide sequence of these genes rapidly and accurately. METHODS: 25-mer nucleotide probes were designed to identify each base for all exons, 10 bases of intronic sequence bordering exons, 280-500 bases upstream from the first exon for each gene, and 350 bases of the second intron of the JAG1 gene and tiled using the Affymetrix resequencing platform. We then developed high-fidelity polymerase chain reactions to produce amplicons using 1 mL of blood from each subject; amplicons were hybridized to the chip, and nucleotide calls were validated by standard capillary sequencing methods. RESULTS: Hybridization of amplicons with the chip produced a high nucleotide sequence readout for all 5 genes in a single assay, with an automated call rate of 93.5% (range, 90.3%-95.7%). The accuracy of nucleotide calls was 99.99% when compared with capillary sequencing. Testing the chip on subjects with cholestatic syndromes identified disease-causing mutations in SERPINA1, JAG1, ATP8B1, ABCB11, or ABCB4. CONCLUSIONS: The resequencing chip efficiently reads SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 with a high call rate and accuracy in one assay and identifies disease-causing mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
70 Diagnosisa Mutation 1 ␣1AT deficiency SERPINA1 T638C (Val213Ala, homozygous) and G1024A (Glu342Lys, homozygous)45,46 2 ␣1AT deficiency SERPINA1 T638C (Val213Ala, homozygous) and G1024A (Glu342Lys, homozygous)45,46 3 ␣1AT deficiency SERPINA1 T638C (Val213Ala, homozygous) and G1024A (Glu342Lys, homozygous)45,46 4 Alagille syndrome JAG1 C2230T (Arg744stop, heterozygous)47 5 Alagille syndrome JAG1 IVS19 ϩ1 G to A, heterozygous48 6 Alagille syndrome JAG1 C2650T (Glu884Stop, heterozygous)b 7 Alagille syndrome JAG1 C2650T (Glu884Stop, heterozygous)b 8 PFIC1 ATP8B1 C2788T (Arg930stop, heterozygous)28 9 PFIC1 ATP8B1 T1982C (Ile661Thr, heterozygous)15 10 PFIC1 ATP8B1 569-base pair deletion (including first 17 base pairs in exon 23, homozygous)b 11 PFIC2 ABCB11 C3457T (Arg1153Cys, heterozygous)17 12 PFIC2 ABCB11 C2782T (Arg928Stop, heterozygous)b 13 PFIC3 ABCB4 A874T (Lys292Stop, homozygous) and A1954G (Arg652Gly, homozygous)49 14 Biliary atresia ATP8B1 IVS 26 ϩ8 G to T, heterozygousb 15 Biliary atresia No nonsynonymous polymorphism 16 Biliary atresia No nonsynonymous polymorphism 17 Biliary atresia JAG1 C2612G (Pro871Arg, heterozygous)50 18 Biliary atresia SERPINA1 G302A (Arg101His, heterozygous)51 NOTE.
X
ABCB4 p.Gly1024Ala 17241866:70:87
status: NEWX
ABCB4 p.Gly1024Ala 17241866:70:88
status: NEWX
ABCB4 p.Gly1024Ala 17241866:70:190
status: NEW