ABCA4 p.Ala1028Val
ClinVar: |
c.3083C>T
,
p.Ala1028Val
D
, Pathogenic
|
Predicted by SNAP2: | C: N (82%), D: N (61%), E: N (72%), F: N (57%), G: N (87%), H: N (82%), I: N (82%), K: N (78%), L: N (78%), M: N (78%), N: N (82%), P: N (72%), Q: N (82%), R: N (72%), S: N (93%), T: N (87%), V: D (63%), W: D (71%), Y: N (66%), |
Predicted by PROVEAN: | C: D, D: D, E: D, F: D, G: N, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Molecular genetic analysis of ABCR gene in Japanes... Jpn J Ophthalmol. 2000 May-Jun;44(3):245-9. Fuse N, Suzuki T, Wada Y, Yoshida M, Shimura M, Abe T, Nakazawa M, Tamai M
Molecular genetic analysis of ABCR gene in Japanese dry form age-related macular degeneration.
Jpn J Ophthalmol. 2000 May-Jun;44(3):245-9., [PMID:10913642]
Abstract [show]
PURPOSE: To explore whether the mutation in the retina-specific ATP-binding cassette transporter (ABCR) gene, the Stargardt's disease gene, contributes to the prevalence of the dry form of age-related macular degeneration (dry AMD) in Japanese unrelated patients. METHODS: Twenty-five Japanese unrelated patients with dry AMD who were diagnosed by fluorescein angiography and indocyanine green angiography were chosen as the dry AMD group. None of these cases had apparent choroidal neovascularization. To detect the mutations in the ABCR gene, genomic DNA was extracted from leukocytes of peripheral blood, and 26 exons of the ABCR gene were amplified by polymerase chain reaction (PCR). All the PCR products were then directly sequenced. When a mutation was detected, the occurrence of a mutation was compared between these AMD patients and the control group. RESULTS: After direct sequencing, a point mutation in exon 29 was found in one of the 25 dry AMD patients. In addition, a polymorphism in exon 45 was found in two other patients, and three sequence variations in exon 23 were detected in all patients. The incidence in AMD patients in whom a mutation in exon 29 (4%) was detected was less than that in controls (5%). Screening of the intron-exon boundaries also led to the identification of intronic mutation in intron 33. CONCLUSION: In this study we found no relationship between allelic variation in the ABCR gene and the prevalence of dry AMD in Japanese unrelated patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
31 Mutations Found in ABCR* Gene in 26 Exons Examined in This Study Exon AMD† Stargardt`s Disease Exon AMD Stargardt`s Disease 11 E471K 29 T1428M 15 31 R1517S 16 G818E, G863A (D847H) 33 I1562T G1578R 17 34 N1614FS 18 35 19 V931M, 2884delC N965M, (R943Q) 36 5196ϩ1G→A 5041deL15 5196ϩ2T→C 20 40 R1898H R1898H 21 A1028V 42 G1961E G1961E 22 3211insGT, V1072A E1087K 43 L1970F 6006ϩ1G→T 23 R1129L 44 L2027F, R2038W (I2023I) 24 45 V2050L, R2077W (I2083I) 25 46 R2106C (V2094V) 27 48 6519⌬11bp D2177N 6568⌬C 6519⌬11bp 6709insG *ABCR: ATP-binding cassette transporter.
X
ABCA4 p.Ala1028Val 10913642:31:340
status: NEW[hide] Autosomal recessive retinitis pigmentosa and cone-... Hum Mol Genet. 1998 Mar;7(3):355-62. Cremers FP, van de Pol DJ, van Driel M, den Hollander AI, van Haren FJ, Knoers NV, Tijmes N, Bergen AA, Rohrschneider K, Blankenagel A, Pinckers AJ, Deutman AF, Hoyng CB
Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR.
Hum Mol Genet. 1998 Mar;7(3):355-62., [PMID:9466990]
Abstract [show]
Ophthalmological and molecular genetic studies were performed in a consanguineous family with individuals showing either retinitis pigmentosa (RP) or cone-rod dystrophy (CRD). Assuming pseudodominant (recessive) inheritance of allelic defects, linkage analysis positioned the causal gene at 1p21-p13 (lod score 4.22), a genomic segment known to harbor the ABCR gene involved in Stargardt's disease (STGD) and age-related macular degeneration (AMD). We completed the exon-intron structure of the ABCR gene and detected a severe homozygous 5[prime] splice site mutation, IVS30+1G->T, in the four RP patients. The five CRD patients in this family are compound heterozygotes for the IVS30+1G->T mutation and a 5[prime] splice site mutation in intron 40 (IVS40+5G->A). Both splice site mutations were found heterozygously in two unrelated STGD patients, but not in 100 control individuals. In these patients the second mutation was either a missense mutation or unknown. Since thus far no STGD patients have been reported to carry two ABCR null alleles and taking into account that the RP phenotype is more severe than the STGD phenotype, we hypothesize that the intron 30 splice site mutation represents a true null allele. Since the intron 30 mutation is found heterozygously in the CRD patients, the IVS40+5G->A mutation probably renders the exon 40 5[prime] splice site partially functional. These results show that mutations in the ABCR gene not only result in STGD and AMD, but can also cause autosomal recessive RP and CRD. Since the heterozygote frequency for ABCR mutations is estimated at 0.02, mutations in ABCR might be an important cause of autosomal recessive and sporadic forms of RP and CRD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
106 STGD patient 8439 carries a C!T transition at nucleotide position 3113, resulting in an Ala1038Val mutation in the predicted ABCR protein (Table 1).
X
ABCA4 p.Ala1028Val 9466990:106:52
status: NEW108 This mutation was previously erroneously designated Ala1028Val (18; R.Allikmets, personal communication).
X
ABCA4 p.Ala1028Val 9466990:108:52
status: NEW