ABCA4 p.Thr1572Met
ClinVar: |
c.4714A>T
,
p.Thr1572Ser
?
, not provided
|
Predicted by SNAP2: | A: N (61%), C: N (57%), D: N (53%), E: N (57%), F: D (63%), G: N (53%), H: N (66%), I: N (57%), K: N (66%), L: N (53%), M: N (66%), N: N (66%), P: N (53%), Q: N (57%), R: N (53%), S: N (93%), V: N (61%), W: D (75%), Y: D (71%), |
Predicted by PROVEAN: | A: N, C: N, D: N, E: N, F: D, G: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, V: N, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] ABCA4 sequence variants in Chinese patients with a... Ophthalmologica. 2003 Mar-Apr;217(2):111-4. Baum L, Chan WM, Li WY, Lam DS, Wang PB, Pang CP
ABCA4 sequence variants in Chinese patients with age-related macular degeneration or Stargardt's disease.
Ophthalmologica. 2003 Mar-Apr;217(2):111-4., [PMID:12592048]
Abstract [show]
ABCA4 gene sequence alterations cause Stargardt's disease (STGD) and may cause some age-related macular degeneration (AMD). We sought to shed light on these associations among Hong Kong Chinese by genotyping 140 AMD, 18 STGD and 95 normal control subjects for 15 ABCA4 exons which were reported to often contain AMD- or STGD-associated mutations. Sequence alterations R212H, T1428M, V1433I, T1572M, I2166M, IVS6-5T>G and IVS33+1G>T were found in AMD patients. T1428M and R2040X occurred in STGD patients. Control subjects displayed all the above missense alterations but no splicing or nonsense changes. Therefore, ABCA4 splicing mutations may be associated with a small proportion of AMD cases.
Comments [show]
None has been submitted yet.
No. Sentence Comment
3 Sequence alterations R212H, T1428M, V1433I, T1572M, I2166M, IVS6-5T1G and IVS33+1G1T were found in AMD patients.
X
ABCA4 p.Thr1572Met 12592048:3:44
status: NEW18 ABCA4 protein or splice sequence alterations in AMD and normal controls Sequence change AMD (140) Normal (95) Reports R212H 1 (1%) 1 (1%) polymorphism [18, 24] IVS6-5T1G 1 (1%) 0 (0%) novel T1428M 18 (13%) 15 (16%) rare in AMD [15] or common polymorphism [17] V1433I 1 (1%) 1 (1%) 1/150 STGD families and 0/220 normal controls [14]; 1/182 AMD, 0/96 normal controls and 0/374 STGD [38]; not segregated with AMD in families [13] T1572M 1 (1%) 1 (1%) novel IVS33+1G1T 1 (1%) 0 (0%) novel I2166M 2 (1%) 1 (1%) novel Table 2.
X
ABCA4 p.Thr1572Met 12592048:18:427
status: NEW43 T1572M and I2166M have not previously been reported.
X
ABCA4 p.Thr1572Met 12592048:43:0
status: NEW[hide] Differential occurrence of mutations causative of ... Hum Mutat. 2002 Mar;19(3):189-208. Pang CP, Lam DS
Differential occurrence of mutations causative of eye diseases in the Chinese population.
Hum Mutat. 2002 Mar;19(3):189-208., [PMID:11857735]
Abstract [show]
Ethnic differences and geographic variations affect the frequencies and nature of human mutations. In the literature, descriptions of causative mutations of eye diseases in the Chinese population are few. In this paper we attempt to reveal molecular information on genetic eye diseases involving Chinese patients from published and unpublished works by us and other groups. Our studies on candidate genes of eye diseases in the Chinese population in Hong Kong include MYOC and TISR for primary open angle glaucoma, RHO and RP1 for retinitis pigmentosa, ABCA4 and APOE for age-related macular degeneration, RB1 for retinoblastoma, APC for familial adenomatous polyposis with congenital hypertrophy of retinal pigment epithelium, BIGH3/TGFBI for corneal dystrophies, PAX6 for aniridia and Reiger syndrome, CRYAA and CRYBB2 for cataracts, and mtDNA for Leber hereditary optic neuropathy. We have revealed novel mutations in most of these genes, and in RHO, RP1, RB1, BIGH3, and PAX6 we have reported mutations that contribute to better understanding of the functions and properties of the respective gene products. We showed absence of MYOC does not necessarily cause glaucoma. No disease causative mutations have been identified in MYOC or ABCA4. There are similarities in the patterns of sequence alterations and phenotype-genotype associations in comparison with other ethnic groups, while the MYOC, RB1, APC, and PAX6 genes have more Chinese-specific sequence alterations. Establishment of a mutation database specific for the Chinese is essential for identification of genetic markers with diagnostic, prognostic, or pharmacological values.
Comments [show]
None has been submitted yet.
No. Sentence Comment
182 Four other heterozygous missense sequence alterations, R212H, V143I, T1572M, I2166M, and one splice site alteration, IVS6-5T>G, were identified.
X
ABCA4 p.Thr1572Met 11857735:182:69
status: NEW[hide] Clinical and molecular analysis of Stargardt disea... Am J Ophthalmol. 2013 Sep;156(3):487-501.e1. doi: 10.1016/j.ajo.2013.05.003. Fujinami K, Sergouniotis PI, Davidson AE, Wright G, Chana RK, Tsunoda K, Tsubota K, Egan CA, Robson AG, Moore AT, Holder GE, Michaelides M, Webster AR
Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function.
Am J Ophthalmol. 2013 Sep;156(3):487-501.e1. doi: 10.1016/j.ajo.2013.05.003., [PMID:23953153]
Abstract [show]
PURPOSE: To describe a cohort of patients with Stargardt disease who show a foveal-sparing phenotype. DESIGN: Retrospective case series. METHODS: The foveal-sparing phenotype was defined as foveal preservation on autofluorescence imaging, despite a retinopathy otherwise consistent with Stargardt disease. Forty such individuals were ascertained and a full ophthalmic examination was undertaken. Following mutation screening of ABCA4, the molecular findings were compared with those of patients with Stargardt disease but no foveal sparing. RESULTS: The median age of onset and age at examination of 40 patients with the foveal-sparing phenotype were 43.5 and 46.5 years. The median logMAR visual acuity was 0.18. Twenty-two patients (22/40, 55%) had patchy parafoveal atrophy and flecks; 8 (20%) had numerous flecks at the posterior pole without atrophy; 7 (17.5%) had mottled retinal pigment epithelial changes; 2 (5%) had multiple atrophic lesions, extending beyond the arcades; and 1 (2.5%) had a bull's-eye appearance. The median central foveal thickness assessed with spectral-domain optical coherence tomographic images was 183.0 mum (n = 33), with outer retinal tubulation observed in 15 (45%). Twenty-two of 33 subjects (67%) had electrophysiological evidence of macular dysfunction without generalized retinal dysfunction. Disease-causing variants were found in 31 patients (31/40, 78%). There was a higher prevalence of the variant p.Arg2030Gln in the cohort with foveal sparing compared to the group with foveal atrophy (6.45% vs 1.07%). CONCLUSIONS: The distinct clinical and molecular characteristics of patients with the foveal-sparing phenotype are described. The presence of 2 distinct phenotypes of Stargardt disease (foveal sparing and foveal atrophy) suggests that there may be more than 1 disease mechanism in ABCA4 retinopathy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
141 Allele Frequencies of 72 ABCA4 Variants Identified in a Comparison Groupa With the Typical Stargardt Disease (140 Patients Without Evidence of Foveal Sparing on Autofluorescence Imaging) Exon Nucleotide Substitution and Amino Acid Change Number of Alleles Allele Frequency 2 c.71G>A, p.Arg24His 1 0.36% 2 c.161G>A, p.Cys54Tyr 3 1.07% 3 c.223T>G, p.Cys75Gly 1 0.36% 5 c.455G>A, p.Arg152Gln 1 0.36% 5 c.454C>T, p.Arg152* 1 0.36% 5 c.466 A>G, p.Ile156Val 2 0.71% 6 c.634C>T, p. Arg212Cys 3 1.07% 6 c.656G>C, p.Arg219Thr 1 0.36% 6 c.666_678delAAAGACGGTGCGC, p.Lys223_Arg226delfs 2 0.71% 6 c.768G>T, Splicing site 4 1.42% 8 c.1037A>C, p.Lys346Thr 1 0.36% 10 c.1222C>T, p.Arg408* 3 1.07% 12 c.1622T>C, p.Leu541Pro 2 0.71% 12 c.1648 G>T, p.Gly550* 1 0.36% 13 c.1804C>T, p.Arg602Trp 1 0.36% 13 c.1817G>A, p.Gly606Asp 1 0.36% 13 c.1922G>C, p.Cys641Ser 1 0.36% Int 13 c.1937&#fe;1G>A, Splicing site 2 0.71% 14 c.1957C>T, p.Arg653Cys 2 0.71% 17 c.2588G>C, p.Gly863Ala 19 6.79% 18 c.2701A>G, p.Thr901Ala 1 0.36% 19 c.2791G>A, p.Val931Met 2 0.71% 19 c.2894A>G, p.Asn965Ser 1 0.36% 20 c.2966T>C, p.Vla989Ala 3 1.07% 20 c.2971G>C, p.Gly991Arg 2 0.71% 21 c.3056C>T, p.Thr1019Met 1 0.36% 21 c.3113C>T, p.Ala1038Val 3 1.07% 21 c.3064G>A, p.Glu1022Lys 2 0.71% 22 c.3211_3212insGT, p.Ser1071Cysfs 6 2.14% 22 c.3259G>A, p.Glu1087Lys 4 1.43% 22 c.3292C>T, p.Arg1098Cys 1 0.36% 22 c.3322C>T, p.Arg1108Cys 5 1.79% 22 c.3323G>A, p.Arg1108His 1 0.36% 23 c.3364G>A, p.Glu1122Lys 1 0.36% 23 c.3386G>A, p.Arg1129His 1 0.36% 24 c.3602T>G, p.Leu1201Arg 3 1.07% 27 c.3898C>T, p.Arg1300* 2 0.71% 28 c.4139C>T, p.Pro1380Leu 14 5.00% 28 c.4222T>C, p.Trp1408Arg 1 0.36% 28 c.4234C>T, p.Gly1412* 1 0.36% 28 c.4253&#fe;5G>T, Splice site 1 0.36% 28 c.4253&#fe;4C>T, Splice site 1 0.36% 29 c.4283C>T, p.Thr1428Met 1 0.36% 29 c.4319T>C, p.Phe1440Ser 1 0.36% 29 c.4462T>C, p.Cys1488Arg 1 0.36% 30 c.4469G>A, p.Cys1490Tyr 5 1.79% 30 c.4537_4538insC, p.Gly1513Profs 1 0.36% 31 c.4577C>T, p.Thr1526Met 2 0.71% 33 c.4715C>T, p.Thr1572Met 1 0.36% Continued on next page TABLE 3.
X
ABCA4 p.Thr1572Met 23953153:141:1981
status: NEW[hide] ABCA4 gene screening by next-generation sequencing... Invest Ophthalmol Vis Sci. 2013 Oct 11;54(10):6662-74. doi: 10.1167/iovs.13-12570. Fujinami K, Zernant J, Chana RK, Wright GA, Tsunoda K, Ozawa Y, Tsubota K, Webster AR, Moore AT, Allikmets R, Michaelides M
ABCA4 gene screening by next-generation sequencing in a British cohort.
Invest Ophthalmol Vis Sci. 2013 Oct 11;54(10):6662-74. doi: 10.1167/iovs.13-12570., [PMID:23982839]
Abstract [show]
PURPOSE: We applied a recently reported next-generation sequencing (NGS) strategy for screening the ABCA4 gene in a British cohort with ABCA4-associated disease and report novel mutations. METHODS: We identified 79 patients with a clinical diagnosis of ABCA4-associated disease who had a single variant identified by the ABCA4 microarray. Comprehensive phenotypic data were obtained, and the NGS strategy was applied to identify the second allele by means of sequencing the entire coding region and adjacent intronic sequences of the ABCA4 gene. Identified variants were confirmed by Sanger sequencing and assessed for pathogenicity by in silico analysis. RESULTS: Of the 42 variants detected by prescreening with the microarray, in silico analysis suggested that 34, found in 66 subjects, were disease-causing and 8, found in 13 subjects, were benign variants. We detected 42 variants by NGS, of which 39 were classified as disease-causing. Of these 39 variants, 31 were novel, including 16 missense, 7 splice-site-altering, 4 nonsense, 1 in-frame deletion, and 3 frameshift variants. Two or more disease-causing variants were confirmed in 37 (47%) of 79 patients, one disease-causing variant in 36 (46%) subjects, and no disease-causing variant in 6 (7%) individuals. CONCLUSIONS: Application of the NGS platform for ABCA4 screening enabled detection of the second disease-associated allele in approximately half of the patients in a British cohort where one mutation had been detected with the arrayed primer extension (APEX) array. The time- and cost-efficient NGS strategy is useful in screening large cohorts, which will be increasingly valuable with the advent of ABCA4-directed therapies.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 40 c.4926C>G p.S1642R DC c.5041_5055del GTGGTTGCCATCTGC p.V1681_C1685del DC 2 41 c.4956T>G p.Y1652* DC 1 42 c.5018&#fe;2T>C Splice site DC 1 43 c.5461-10T>C DC c.6385A>G p.S2129G PDC 2 44 c.5461-10T>C DC 1 45 c.5461-10T>C DC 1 46 c.5461-10T>C DC 1 47 c.5461-10T>C DC 1 48 c.5461-10T>C DC 1 49 c.5461-10T>C DC 1 50 c.5461-10T>C DC 1 51 c.5585-1G>A Splice site DC 1 52 c.5714&#fe;5G>A Splice site DC c.6209C>G p.T2070R DC 2 53 c.5882G>A p.G1961E DC c.2686A>G p.K896E B 1 54 c.5882G>A p.G1961E DC c.3050&#fe;1G>C Splice site DC 2 55 c.5882G>A p.G1961E DC c.3392delC/3393C>G p.A1131Gfs DC 2 56 c.5882G>A p.G1961E DC c.4539&#fe;2T>G Splice site DC 2 57 c.5882G>A p.G1961E DC c.4552A>C p.S1518R DC 2 58 c.5882G>A p.G1961E DC c.5899-2delA Splice site DC 2 59 c.5882G>A p.G1961E DC 1 60 c.6079C>T p.L2027F DC c.1906C>T p.Q636* DC 2 61 c.6079C>T p.L2027F DC c.3322C>T p.R1108C DC 2 Allele 2 (p.R1108C) was APEX-false-negative 62 c.6079C>T p.L2027F DC c.3370G>T p.D1124Y DC 2 63 c.6079C>T p.L2027F DC 1 64 c.6089G>A p.R2030Q DC c.4326C>A p.N1442K DC 2 65 c.6445C>T p.R2149* DC 1 66 c.6709A>C p.T2237P DC c.5899-3_5899-2delTA Splice site DC 2 67 c.2971G>C p.G991R B c.4538A>G p.Q1513R DC 1 68 c.3602T>G p.L1201R B c.1749G>C p.K583N DC 1 69 c.3602T>G p.L1201R B c.1982_1983insG p.A662fs DC 1 70 c.3602T>G p.L1201R B c.2972G>T p.G991V DC 1 71 c.4685T>C p.I1562T B c.3289A>T p.R1097* DC 1 72 c.6320G>A p.R2107H B c.2510T>C p.L837P DC 1 73 c.6320G>A p.R2107H B c.4352&#fe;1G>A Splice site DC 1 74 c.2701A>G p.T901A B 0 75 c.3602T>G p.L1201R B 0 76 c.4283C>T p.T1428M B 0 77 c.466A>G p.I156V B 0 78 c.466A>G p.I156V B 0 79 c.4715C>T p.T1572M B 0 Putative novel variants are shown in italics.
X
ABCA4 p.Thr1572Met 23982839:56:1619
status: NEW63 Hum Var Score (0-1) Site Wt CV Mt CV CV % Variation 30 c.4537_4538insC p.G1513fs 1 38 [ Briggs CE, et al. 19 ND False-negative in NGS in patient 38 31 c.4577C>T p.T1526M 1 39 [ [ Lewis RA, et al. 11 Del. 0.00 PRD 0.910 No change ND db SNP (rs61750152) 33 c.4685T>C p.I1562T 1 71 [ [ Yatsenko, et al. 13 Tol. NA PRD 0.783 No change ND Benign 33 c.4715C>T p.T1572M 1 79 [ [ Pang CP and Lamm DS 23 Del. 0.02 B 0.326 No change ND db SNP (rs185093512) Benign 35 c.4926C>G p.S1642R 1 40 [ [ Birch DG, et al. 22 Tol. 0.68 B 0.116 No change ND db SNP (rs61753017) 35 c.4956T>G p.Y1652* 1 41 [ [ Fumagalli A, et al. 16 ND db SNP (rs61750561) IVS35 c.5018&#fe;2T>C Splice site 1 42 [ [ APEX Don. 81.2 54.3 WT site broken (33.07) ND 36 c.5113C>T p.R1705W 1 7 [ Ernest PJ, et al. 26 Del. NA PRD 0.996 Don. 46.5 73.3 No change ND IVS38 c.5461-10T>C 8 43, 44, 45, 46, 47, 48, 49, 50 [ [ Briggs CE, et al. 19 No change 3/13006 db SNP (rs1800728) IVS39 c.5585-1G>A Splice site 1 51 [ [ Shroyer NF, et al. 21 Acc. 86.3 57.4 WT site broken (33.53) ND IVS40 c.5714&#fe;5G>A Splice site 1 52 [ [ Cremers FP, et al. 8 Don. 85.5 73.3 Wild type site broken (14.23) ND 42 c.5882G>A p.G1961E 7 53, 54, 55, 56, 57, 58, 59 [ [ Lewis RA, et al. 11 Del. 0.00 PRD 0.998 No change 41/13006 db SNP (rs1800553) 44 c.6079C>T p.L2027F 4 60, 61, 62, 63 [ [ Lewis RA, et al. 11 Del. 0.00 PRD 1.000 No change 4/13006 db SNP (rs61751408) 44 c.6089G>A p.R2030Q 1 64 [ [ Lewis RA, et al. 11 Del. 0.00 PRD 0.995 No change 8/13006 db SNP (rs61750641) 46 c.6320G>A p.R2107H 2 72, 73 [ [ Fishman GA, et al. 15 Del. 0.04 PRD 0.999 No change 91/13006 db SNP (rs62642564) Benign 47 c.6445C>T p.R2149* 1 65 [ [ Lewis RA, et al. 14 1/13006 db SNP (rs61750654) 48 c.6529G>A p.D2177N 1 19 [ Rivera A, et al. 17 Tol. 0.41 B 0.004 No change 116/13006 db SNP (rs1800555) Benign 48 c.6709A>C p.T2237P 1 66 [ [ APEX Del. NA POD 0.719 No change ND IVS48 c.6729&#fe;4_ &#fe;18del AGTTGGCCCTGGGGC Splice site 1 17 [ Littink KW, et al. 28 NA ND Splice-site alteration (described as splice site) includes the change expected to affect splicing, for example, when the splice donor or splice acceptor site is changed, and the change that might affect splicing, for example, changes close to the splice donor or splice acceptor site, or in the first or last nucleotide of an exon. SIFT (version 4.0.4) results are reported to be tolerant if tolerance index is ߥ0.05 or deleterious if tolerance index is <0.05.
X
ABCA4 p.Thr1572Met 23982839:63:356
status: NEW