ABCA4 p.Met1Val
ClinVar: |
c.1A>G
,
p.Met1Val
?
, not provided
|
Predicted by SNAP2: | A: N (87%), C: N (93%), D: N (72%), E: N (93%), F: N (97%), G: N (66%), H: N (93%), I: N (97%), K: N (93%), L: N (97%), N: N (87%), P: N (82%), Q: N (93%), R: N (87%), S: N (93%), T: N (93%), V: N (97%), W: N (82%), Y: N (93%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: N, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] ABCA4 mutations in Portuguese Stargardt patients: ... Mol Vis. 2009;15:584-91. Epub 2009 Mar 25. Maia-Lopes S, Aguirre-Lamban J, Castelo-Branco M, Riveiro-Alvarez R, Ayuso C, Silva ED
ABCA4 mutations in Portuguese Stargardt patients: identification of new mutations and their phenotypic analysis.
Mol Vis. 2009;15:584-91. Epub 2009 Mar 25., [PMID:19365591]
Abstract [show]
PURPOSE: To resolve the spectrum of causative retina-specific ATP-binding cassette transporter gene (ABCA4) gene mutations in Portuguese Stargardt (STGD) patients and compare allele frequencies obtained in this cohort with those of previous population surveys. METHODS: Using a microarray technique (ABCR400 gene chip), we screened all previously reported ABCA4 gene mutations in the genomic DNA of 27 patients from 21 unrelated Stargardt families whose phenotypes had been clinically evaluated using psychophysics and electrophysiological measurements. Furthermore, we performed denaturing high performance liquid chromatography whenever one or both mutant alleles failed to be detected using the ABCR gene chip. RESULTS: A total of 36 mutant alleles (out of the 54 tested) were identified in STGD patients, resulting in a detection rate of 67%. Two mutant alleles were present in 12 out of 21 STGD families (57%), whereas in four out of 21 (19%) of the families, only one mutant allele was found. We report the presence of 22 putative pathogenic alterations, including two sequence changes not found in other populations, c.2T>C (p.Met1Thr) and c.4036_4037delAC (p.Thr1346fs), and two novel disease-associated variants, c.400C>T (p.Gln134X) and c.4720G>T (p.Glu1574X). The great majority of the mutations were missense (72.7%). Seven frameshift variants (19.4%), three nonsense mutations (8.3%), and one splicing sequence change (2.7%) were also found in STGD chromosomes. The most prevalent pathologic variant was the missense mutation p.Leu11Pro. Present in 19% of the families, this mutation represents a quite high prevalence in comparison to other European populations. In addition, 23 polymorphisms were also identified, including four novel intronic sequence variants. CONCLUSIONS: To our knowledge, this study represents the first report of ABCA4 mutations in Portuguese STGD patients and provides further evidence of different mutation frequency across populations. Phenotypic characterization of novel putative mutations was addressed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
62 [Val931Met]+[Ser1642Arg], found in 4.8% of the families, and p.
X
ABCA4 p.Met1Val 19365591:62:1
status: NEW63 [Met1Val]+ [Arg2030Gln], found in 4.8% of the families (for details, see Table 1).
X
ABCA4 p.Met1Val 19365591:63:1
status: NEWX
ABCA4 p.Met1Val 19365591:63:81
status: NEW64 Most of the mutations detected have been reported as STGD-associated variants: p.Met1Val, p.Asn96Asp, p.Arg290Trp, p.Val931Met, p.Gly1961Glu, p.Leu2027Phe, p.Arg2030Gln, p.Asp1048fs, and IVS40+5G>A.
X
ABCA4 p.Met1Val 19365591:64:81
status: NEW[hide] Mutations in ABCR (ABCA4) in patients with Stargar... Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2229-36. Briggs CE, Rucinski D, Rosenfeld PJ, Hirose T, Berson EL, Dryja TP
Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration.
Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2229-36., [PMID:11527935]
Abstract [show]
PURPOSE: To determine the spectrum of ABCR mutations associated with Stargardt macular degeneration and cone-rod degeneration (CRD). METHODS: One hundred eighteen unrelated patients with recessive Stargardt macular degeneration and eight with recessive CRD were screened for mutations in ABCR (ABCA4) by single-strand conformation polymorphism analysis. Variants were characterized by direct genomic sequencing. Segregation analysis was performed on the families of 20 patients in whom at least two or more likely pathogenic sequence changes were identified. RESULTS: The authors found 77 sequence changes likely to be pathogenic: 21 null mutations (15 novel), 55 missense changes (26 novel), and one deletion of a consensus glycosylation site (also novel). Fifty-two patients with Stargardt macular degeneration (44% of those screened) and five with CRD each had two of these sequence changes or were homozygous for one of them. Segregation analyses in the families of 19 of these patients were informative and revealed that the index cases and all available affected siblings were compound heterozygotes or homozygotes. The authors found one instance of an apparently de novo mutation, Ile824Thr, in a patient. Thirty-seven (31%) of the 118 patients with Stargardt disease and one with CRD had only one likely pathogenic sequence change. Twenty-nine patients with Stargardt disease (25%) and two with CRD had no identified sequence changes. CONCLUSIONS: This report of 42 novel mutations brings the growing number of identified likely pathogenic sequence changes in ABCR to approximately 250.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 Twenty-one of the changes (including 15 novel changes) were interpreted as obviously null mutations: One was a missense change affecting the initiation codon (Met1Val), four were nonsense mutations, four changed canonical splice-site donor or acceptor sites, and 12 were frameshifts caused by the insertion or deletion of one or more base pairs (Table 1).
X
ABCA4 p.Met1Val 11527935:57:159
status: NEW56 Twenty-one of the changes (including 15 novel changes) were interpreted as obviously null mutations: One was a missense change affecting the initiation codon (Met1Val), four were nonsense mutations, four changed canonical splice-site donor or acceptor sites, and 12 were frameshifts caused by the insertion or deletion of one or more base pairs (Table 1).
X
ABCA4 p.Met1Val 11527935:56:159
status: NEW[hide] Clinical and molecular genetic study of 12 Italian... Genet Mol Res. 2012 Dec 17;11(4):4342-50. doi: 10.4238/2012.October.9.3. Oldani M, Marchi S, Giani A, Cecchin S, Rigoni E, Persi A, Podavini D, Guerrini A, Nervegna A, Staurenghi G, Bertelli M
Clinical and molecular genetic study of 12 Italian families with autosomal recessive Stargardt disease.
Genet Mol Res. 2012 Dec 17;11(4):4342-50. doi: 10.4238/2012.October.9.3., [PMID:23096905]
Abstract [show]
Stargardt disease was diagnosed in 12 patients from 12 families using complete ophthalmologic examination, fundus photography, fundus autofluorescence, and spectral-domain optical coherence tomography. DNA was extracted for polymerase chain reaction (PCR) and direct DNA sequencing (ABCA4 gene). Genetic counseling and eye examination were offered to 16 additional family members. Various patterns of presentation were observed in patients with clinical diagnoses of Stargardt disease. The genetic study identified 2 mutations in 75% of families (9/12); a second mutation could not be found in the remaining 25% of families (3/12). The most frequent mutation was G1961E, found in 17% of families (2/12). This finding is similar to that of a previous analysis report of an Italian patient series. Four new mutations were also identified: Tyr1858Asp, Leu1195fsX1196, p.Tyr850Cys, and p.Thr959Ala. Our results suggest that PCR and direct DNA sequencing are the most appropriate techniques for the analysis of the ABCA4 gene. However, this method requires supplementation with specific PCR analysis to diagnose large deletions. The study of the families identified healthy carriers and affected subjects in presymptomatic stages and was also useful for evaluating the risk of transmission to progeny. Combined ophthalmologic and genetic evaluation enabled better clinical management of these families.
Comments [show]
None has been submitted yet.
No. Sentence Comment
69 of patients Subject Allele 1 Allele 2 Age of diagnosis (years) Visual acuity Right eye Left eye 1 F1 ID81 Tyr1858Asp Met1Val; Arg2030Gln 22 20/50 20/32 2 F2 ID220 Ile156Val Gly607Arg; Gly1961Glu 30 20/800 20/400 3 F3 ID362 Met1Val Gly1961Glu; Arg2030Gln 60 20/40 20/32 4 F4 ID197 Asp1532Asn Arg2030term 40 20/32 20/32 5 F6 ID363 Tyr362Term Gly863Ala 16 20/200 20/250 6 F7 ID365 Arg1098Cys Cys1488Arg 50 20/32 20/800 7 F8 ID394 Arg18Trp Val767Asp 10 20/800 20/800 8 F9 ID396 IVS40+5G>A IVS13+1G>A 19 20/40 20/50 9 F10 ID366 p.Gln1513Profs*42 - 20 20/200 20/200 10 F12 ID377 Leu1195Argfs*2 - 50 20/32 20/20 11 F13 ID4 Cys2150Tyr - 70 20/400 20/400 12 F17 ID457 p.Tyr850Cys p.Thr959Ala 50 20/20 20/40 F1 = family 1; ID = reference code to a specific patient.
X
ABCA4 p.Met1Val 23096905:69:139
status: NEWX
ABCA4 p.Met1Val 23096905:69:270
status: NEW