ABCA4 p.Gly618Glu
ClinVar: |
c.1853G>A
,
p.Gly618Glu
?
, not provided
|
Predicted by SNAP2: | A: D (53%), C: D (63%), D: D (66%), E: D (80%), F: D (75%), H: D (59%), I: D (71%), K: D (66%), L: D (75%), M: D (71%), N: D (53%), P: D (71%), Q: D (59%), R: D (66%), S: N (53%), T: D (53%), V: D (71%), W: D (85%), Y: D (75%), |
Predicted by PROVEAN: | A: N, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: N, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Outcome of ABCA4 microarray screening in routine c... Mol Vis. 2009 Dec 20;15:2841-7. Ernest PJ, Boon CJ, Klevering BJ, Hoefsloot LH, Hoyng CB
Outcome of ABCA4 microarray screening in routine clinical practice.
Mol Vis. 2009 Dec 20;15:2841-7., [PMID:20029649]
Abstract [show]
PURPOSE: To retrospectively analyze the clinical characteristics of patients who were screened for mutations with the ATP-binding cassette transporter gene ABCA4 (ABCA4) microarray in a routine clinical DNA diagnostics setting. METHODS: We performed a retrospective analysis of the medical charts of 65 patients who underwent an ABCA4 microarray screening between the years 2002 and 2006. An additional denaturing gradient gel electrophoresis (DGGE) was performed in these patients if less than two mutations were found with the microarray. We included all patients who were suspected of autosomal recessive Stargardt disease (STGD1), autosomal recessive cone-rod dystrophy (arCRD), or autosomal recessive retinitis pigmentosa at the time of microarray request. After a retrospective analysis of the clinical characteristics, the patients who were suspected of STGD1 were categorized as having either a typical or atypical form of STGD1, according to the age at onset, fundus appearance, fluorescein angiography, and electroretinography. The occurrence of typical clinical features for STGD1 was compared between patients with different numbers of discovered mutations. RESULTS: Of the 44 patients who were suspected of STGD1, 26 patients (59%) had sufficient data available for a classification in either typical (six patients; 23%) or atypical (20 patients; 77%) STGD1. In the suspected STGD1 group, 59% of all expected pathogenic alleles were found with the ABCA4 microarray. DGGE led to the finding of 12 more mutations, resulting in an overall detection rate of 73%. Thirty-one percent of patients with two or three discovered ABCA4 mutations met all typical STGD1 criteria. An age at onset younger than 25 years and a dark choroid on fluorescein angiography were the most predictive clinical features to find ABCA4 mutations in patients suspected of STGD1. In 18 patients suspected of arCRD, microarray screening detected 22% of the possible pathogenic alleles. CONCLUSIONS: In addition to confirmation of the diagnosis in typical STGD1, ABCA4 microarray screening is usually requested in daily clinical practice to strengthen the diagnosis when the disease is atypical. This study supports the view that the efficiency and accuracy of ABCA4 microarray screening are directly dependent upon the clinical features of the patients who are screened.
Comments [show]
None has been submitted yet.
No. Sentence Comment
143 DISCOVERED MUTATIONS IN THE ABCA4 GENE IN THE PATIENTS INCLUDED IN THIS STUDY Nucleotide change Effect Alleles References Mutations already included in the ABCA4 microarray c.286A>G p.Asn96Asp 2 [25] c.656G>C p.Arg219Thr 1 [10] c.740A>T p.Asn247Ile 1 This study* c.768G>T splice site 7 [13] c.899C>A p.Thr300Asn 1 [14] c.1805G>A p.Arg602Gln 1 [9] c.1822T>A p.Phe608Ile 2 [13] c.1853G>A p.Gly618Glu 1 [19] c.1938-1G>A splice site 1 [26] c.2588G>C p.DelGly863/Gly863Ala 8 [13] c.2919del exons20-22 deletion/frameshift 2 [13] c.3335C>A p.Thr1112Asn 1 [13] c.3874C>T p.Gln1292X 1 This study* c.3899G>A p.Arg1300Gln 1 [27] c.4297G>A p.Val1433Ile 1 [17] c.4462T>C p.Cys1488Arg 1 [17] c.4506C>A p.Cys1502X 1 This study* c.4539+1G>T splice site 1 [28] c.4774+1G>A splice site 1 [1] c.5161-5162delAC p.Thr1721fs 1 [27] c.5337C>A p.Tyr1779X 1 This study* c.5461-10T>C unknown 9 [9] c.5537T>C p.Ile1846Thr 1 [13] c.5693G>A p.Arg1898His 1 [1] c.5715+5G>A splice site 2 [28] c.5882G>A p.Gly1961Glu 10 [1] c.6088C>T p.Arg2030X 1 [14] c.6089G>A p.Arg2030Gln 1 [9] c.6238-6239delTC p.Ser2080fs 1 [29] c.6529G>A p.Asp2177Asn 1 [1] New mutations found with DGGE analysis c.303+4A>C splice site 1 c.872C>T p.Pro291Leu 1 c.2906A>G p.Lys969Arg 1 c.2947A>G p.Thr983Ala 1 c.3233G>A p.Gly1078Glu 1 c.3305A>T p.Asp1102Val 1 c.4353+1G>A splice site 1 c.5113C>T p.Arg1705Trp 1 c.5762_5763dup p.Ala1922fs 1 c.6411T>A p.Cys2137X 1 Total 74 Mutations are designated by their nucleotide change, followed by their effect on the protein and the number of alleles that were found with the mutation.
X
ABCA4 p.Gly618Glu 20029649:143:388
status: NEW[hide] Microarray-based mutation analysis of the ABCA4 (A... Eur J Hum Genet. 2004 Dec;12(12):1024-32. Klevering BJ, Yzer S, Rohrschneider K, Zonneveld M, Allikmets R, van den Born LI, Maugeri A, Hoyng CB, Cremers FP
Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.
Eur J Hum Genet. 2004 Dec;12(12):1024-32., [PMID:15494742]
Abstract [show]
Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or autosomal recessive CRD (54 cases) or RP (90 cases). We performed detailed ophthalmologic examinations and identified at least one ABCA4 mutation in 18 patients (33%) with CRD and in five patients (5.6%) with RP. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequencing revealed four novel missense mutations (R24C, E161K, P597S, G618E) and a novel 1-bp deletion (5888delG). Ophthalmoscopic abnormalities in CRD patients ranged from minor granular pigmentary changes in the posterior pole to widespread atrophy. In 12 patients with recordable electroretinogram (ERG) tracings, a cone-rod pattern was detected. Three patients demonstrated progression from a retinal dystrophy resembling STGD1 to a more widespread degeneration, and were subsequently diagnosed as CRD. In addition to a variable degree of atrophy, all RP patients displayed ophthalmologic characteristics of classic RP. When detectable, ERG recordings in these patients demonstrated rod-cone patterns of photoreceptor degeneration. In conclusion, in this study, we show that the ABCA4 mutation chip is an efficient first screening tool for arCRD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
3 Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequencing revealed four novel missense mutations (R24C, E161K, P597S, G618E) and a novel 1-bp deletion (5888delG).
X
ABCA4 p.Gly618Glu 15494742:3:146
status: NEW47 An amplification-refractory mutation-specific (ARMS) assay48 was performed to test G618E (1853G4A).
X
ABCA4 p.Gly618Glu 15494742:47:83
status: NEW55 Likewise, the 2588C and 2828A variants are presumed to be located in the same allele since the 2588C allele in previous studies was always found together with 2828A (see Discussion).33,49 Next, we employed SSCP analysis and DNA sequencing in patients with one ABCA4 mutation and identified five novel ABCA4 mutations that were not present on the microarray, that is, R24C, E161K, P597S, G618E, and 5888delG.
X
ABCA4 p.Gly618Glu 15494742:55:387
status: NEW65 16697 Isolated 2588G4C; 2828G4Ab DG863/G863A; R943Q 1853G4A; 4297G4A G618E; V1433I Yes 16755 Isolated 2588G4C; 2828G4A DG863/G863A; R943Q Not identified NA 16887 Isolated 768G4T Splicing IVS38-10T4C Unknowna Yes 17906 Aut. rec. 768G4T Splicing Not identified NA a Mutation which is presumed to be in linkage disequilibrium with unknown pathologic ABCA4 mutation.
X
ABCA4 p.Gly618Glu 15494742:65:69
status: NEW77 In family members of patient 16697, the 2588C; 2828A variants segregated from the G618E; V1433I mutations.
X
ABCA4 p.Gly618Glu 15494742:77:82
status: NEW143 Given this clinical presentation and the fact that homozygous null mutations were not found Table 5 Functional assessment of missense (A) and splice site (B) mutations (A) Missense mutation Nature of amino-acid change Effect on ABCR functionRef R18W Nonconservative Unknown R24C Nonconservative Unknown; adjacent to first transmembrane domain G65E Nonconservative Unknown E161K Nonconservative Unknown L541P Conservative Decreased ATP binding and ATPase activity50 P597S Nonconservative Unknown G618E Nonconservative Unknown V767D Nonconservative Decreased ABCR expression10 G863A Nonconservative Decreased ATPase activity50, 51 R943Q Nonconservative Decreased ATPase activity51 A1038V Conservative Decreased ATP binding and ATPase activity50 E1087K Nonconservative Decreased ATP binding50 V1433I Conservative Unknown R1640W Nonconservative Unknown A1794D Nonconservative Introduction charged aa in 10th transmembrane domain G1961E Nonconservative Decreased ATP binding and ATPase activity 50 V2050L Conservative Unknown D2177N Nonconservative Increased ATPase activity50 (B) Splice site mutation Effect on mRNARef Predicted effect on ABCR protein 768G4T Nonsense-mediated decay33 No protein IVS36+2T4C Unknown Truncation of exon 36 resulting in V1673fs?
X
ABCA4 p.Gly618Glu 15494742:143:495
status: NEW