ABCA4 p.Ile156Val
ClinVar: |
c.466A>G
,
p.Ile156Val
?
, not provided
|
Predicted by SNAP2: | A: N (53%), C: N (72%), D: D (59%), E: N (57%), F: D (66%), G: D (63%), H: N (61%), K: N (57%), L: N (93%), M: N (87%), N: N (53%), P: D (53%), Q: N (66%), R: N (53%), S: N (61%), T: N (72%), V: D (59%), W: D (59%), Y: N (61%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: N, G: D, H: D, K: D, L: N, M: N, N: D, P: D, Q: D, R: D, S: D, T: N, V: N, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Novel mutations in of the ABCR gene in Italian pat... Eye (Lond). 2010 Jan;24(1):158-64. Epub 2009 Mar 6. Passerini I, Sodi A, Giambene B, Mariottini A, Menchini U, Torricelli F
Novel mutations in of the ABCR gene in Italian patients with Stargardt disease.
Eye (Lond). 2010 Jan;24(1):158-64. Epub 2009 Mar 6., [PMID:19265867]
Abstract [show]
PURPOSE: Stargardt disease (STGD) is the most prevalent juvenile macular dystrophy, and it has been associated with mutations in the ABCR gene, encoding a photoreceptor-specific transport protein. In this study, we determined the mutation spectrum in the ABCR gene in a group of Italian STGD patients. METHODS: The DNA samples of 71 Italian patients (from 62 independent pedigrees), affected with autosomal recessive STGD, were analysed for mutations in all 50 exons of the ABCR gene by the DHPLC approach (with optimization of the DHPLC conditions for mutation analysis) and direct sequencing techniques. RESULTS: In our group of STGD patients, 71 mutations were identified in 68 patients with a detection rate of 95.7%. Forty-three mutations had been already reported in the literature, whereas 28 mutations had not been previously described and were not detected in 150 unaffected control individuals of Italian origin. Missense mutations represented the most frequent finding (59.2%); G1961E was the most common mutation and it was associated with phenotypes in various degrees of severity. CONCLUSIONS: Some novel mutations in the ABCR gene were reported in a group of Italian STGD patients confirming the extensive allelic heterogeneity of this gene-probably related to the vast number of exons that favours rearrangements in the DNA sequence.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 Table 2 Summary of the mutations identified in the ABCR gene in our series of STGD Italian patients Patient Allele 1 mutation Allele 2 mutation S 1 R212C T1019M S 8 V1433I V1433I S 21 A1598D A1598D S 33 N96K G978D S 56 A1598D G1961E S 70 R212C T1019M S 71 W700X WT S 74 6750delA V767D S 77 G1961E WT S 82 Q21X G1961E S 106 C1177X G1961E S 107 C1177X G1961E S 114 T970P-F1015E - S 115 T970P-F1015E - S 120 N415K G1961E S 162 324-327insT 324-327insT S 181 W1408X G1961E S 190 C1177X A1598D S 201 G1961E WT S 202 Q21X T970P-F1015E S 213 M840R G1961E S 231 WT WT S 236 C1177X G1961E S 237 WT WT S 241 V256 splice WT S 246 IVS6-1g4t R1108C S 260 L2221P 5109delG-I156V S 321 IVS9 þ 1G4C S1099X S 328 IVS42 þ 4delG IVS35 þ 2t4c S 346 E2096K WT S 347 IVS28 þ 5g4a WT S 353 P1484S-G1961E P68L S 354 P1484S-G1961E P68L S 355 P1484S-G1961E P68L S 360 G1961E 5961delGGAC S 364 IVS35 þ 2t4c G1961E S 365 L541P/A1038V G1961E S 377 IVS42 þ 4delG IVS35 þ 2t4c S 380 R653C WT S 413 R212C T1019M S 414 A1598D G1961E S 417 G1078E G1961E S 438 R1055W WT S 440 4021ins24bp T1526M-G1961E S 449 W1479X L2140Q S 450 W1479X L2140Q S 474 W1461X G 1977S S 486 WT WT S 492 R1098C/L1970F 6548insTGAA S 528 T977P IVS40 þ 5g4a S 531 G690V Q1332X S 532 R572X L1473M-4733delGTTT S 535 IVS40 þ 5g4a 5917delG S 550 IVS40 þ 5g4a 6750delA S 555 250insCAAA WT S 556 250insCAAA WT S 575 N96H G1961E S 590 W821R IVS40 þ 5g4a S 592 V931M R1108C S 593 V767D R2030X Table 2 (Continued ) Patient Allele 1 mutation Allele 2 mutation S 594 G172S G1961E S 602 P1380L G1961E S 607 E616K L1580S-K2172R S 640 250insCAAA S1696N S 694 IVS35 þ 2t4c G1961E S 725 IVS13 þ 1g4a Q1376 splice S 731 L541P-A1038V G1961E S 755 N965S IVS40 þ 5g4a S 789 E1087K G1977S S 968 T1019M G1961E S 992 R212C G1961E Bold values indicate novel mutations.
X
ABCA4 p.Ile156Val 19265867:57:657
status: NEW[hide] Frequency of ABCA4 mutations in 278 Spanish contro... Br J Ophthalmol. 2009 Oct;93(10):1359-64. Epub 2008 Oct 31. Riveiro-Alvarez R, Aguirre-Lamban J, Lopez-Martinez MA, Trujillo-Tiebas MJ, Cantalapiedra D, Vallespin E, Avila-Fernandez A, Ramos C, Ayuso C
Frequency of ABCA4 mutations in 278 Spanish controls: an insight into the prevalence of autosomal recessive Stargardt disease.
Br J Ophthalmol. 2009 Oct;93(10):1359-64. Epub 2008 Oct 31., [PMID:18977788]
Abstract [show]
AIM: To determine the carrier frequency of ABCA4 mutations in order to achieve an insight into the prevalence of autosomal recessive Stargardt disease (arSTGD) in the Spanish population. METHODS: arSTGD patients (n = 133) were analysed using ABCR400 microarray and sequencing. Control subjects were analysed by two different strategies: 200 individuals were screened for the p.Arg1129Leu mutation by denaturing-HPLC and sequencing; 78 individuals were tested for variants with the microarray and sequencing. RESULTS: For the first strategy in control subjects, the p.Arg1129Leu variant was found in two heterozygous individuals, which would mean a carrier frequency for any variant of approximately 6.0% and a calculated arSTGD prevalence of 1:1000. For the second strategy, carrier frequency was 6.4% and therefore an estimated prevalence of the disease of 1:870. CONCLUSION: Calculated prevalence of arSTGD based on the ABCA4 carrier frequency could be considerably higher than previous estimation. This discrepancy between observed (genotypic) and estimated (phenotypic) prevalence could be due to the existence of non-pathological or low penetrance alleles, which may result in late-onset arSTGD or may be implicated in age-related macular degeneration. This situation should be regarded with special care when genetic counselling is given and further follow-up of these patients should be recommended.
Comments [show]
None has been submitted yet.
No. Sentence Comment
96 These Table 1 ABCA4 sequence variants identified in Spanish control population Mutant alleles Nucleotide change Amino acid change Number of cases Number of alleles Frequency (%) Homozygous individuals Mutations* c.661G.A p.Gly221Arg 1 1 0.64 None c.1140T.A p.Asn380Lys 1 1 0.64 None c.2588G.C p.Gly863Ala 1 1 0.64 None c.3113C.T p.Ala1038Val 1 1 0.64 None c.3899G.A p.Arg1300Gln 1 1 0.64 None c.5882G.A p.Gly1961Glu 1 1 0.64 None c.5908C.T p.Leu1970Phe 1 1 0.64 None c.6148G.C p.Val2050Leu 1 1 0.64 None c.6529G.A p.Asp2177Asn 2 2 1.28 None Total 10 Polymorphisms{ c.466A.G p.Ile156Val 5 5 3.2 None c.635G.A p.Arg212His 5 6 3.84 1 c.1268A.G p.His423Arg 43 48 30.7 5 c.1269C.T p.His423His 2 2 1.28 None IVS10+5delG 34 36 23 2 c.2828G.A p.Arg943Gln 1 1 0.64 None c.4203C.A p.Pro1401Pro 3 3 1.9 None IVS33+48C.T 59 75 48 16 c.5603A.T p.Asn1868Ile 4 4 2.5 None c.5682G.C p.Leu1894Leu 29 35 22.4 6 c.5814A.G p.Leu1938Leu 27 33 21.1 6 c.5843 C.T p.Pro1948Leu 9 10 6.4 1 c.5844A.G p.Pro1948Pro 27 32 20.5 5 c.6069C.T p.Ile2023Ile 11 12 7.7 1 c.6249C.T p.Ile2083Ile 12 14 8.9 2 c.6285T.C p.Asp2095Asp 24 26 16.6 2 c.6764G.T p.Ser2255Ile 12 13 8.3 1 *A total of 15 mutant alleles were detected.
X
ABCA4 p.Ile156Val 18977788:96:576
status: NEW97 These Table 1 ABCA4 sequence variants identified in Spanish control population Mutant alleles Nucleotide change Amino acid change Number of cases Number of alleles Frequency (%) Homozygous individuals Mutations* c.661G.A p.Gly221Arg 1 1 0.64 None c.1140T.A p.Asn380Lys 1 1 0.64 None c.2588G.C p.Gly863Ala 1 1 0.64 None c.3113C.T p.Ala1038Val 1 1 0.64 None c.3899G.A p.Arg1300Gln 1 1 0.64 None c.5882G.A p.Gly1961Glu 1 1 0.64 None c.5908C.T p.Leu1970Phe 1 1 0.64 None c.6148G.C p.Val2050Leu 1 1 0.64 None c.6529G.A p.Asp2177Asn 2 2 1.28 None Total 10 Polymorphisms{ c.466A.G p.Ile156Val 5 5 3.2 None c.635G.A p.Arg212His 5 6 3.84 1 c.1268A.G p.His423Arg 43 48 30.7 5 c.1269C.T p.His423His 2 2 1.28 None IVS10+5delG 34 36 23 2 c.2828G.A p.Arg943Gln 1 1 0.64 None c.4203C.A p.Pro1401Pro 3 3 1.9 None IVS33+48C.T 59 75 48 16 c.5603A.T p.Asn1868Ile 4 4 2.5 None c.5682G.C p.Leu1894Leu 29 35 22.4 6 c.5814A.G p.Leu1938Leu 27 33 21.1 6 c.5843 C.T p.Pro1948Leu 9 10 6.4 1 c.5844A.G p.Pro1948Pro 27 32 20.5 5 c.6069C.T p.Ile2023Ile 11 12 7.7 1 c.6249C.T p.Ile2083Ile 12 14 8.9 2 c.6285T.C p.Asp2095Asp 24 26 16.6 2 c.6764G.T p.Ser2255Ile 12 13 8.3 1 *A total of 15 mutant alleles were detected.
X
ABCA4 p.Ile156Val 18977788:97:576
status: NEW[hide] Molecular analysis of the ABCA4 gene for reliable ... Br J Ophthalmol. 2009 May;93(5):614-21. Epub 2008 Nov 21. Aguirre-Lamban J, Riveiro-Alvarez R, Maia-Lopes S, Cantalapiedra D, Vallespin E, Avila-Fernandez A, Villaverde-Montero C, Trujillo-Tiebas MJ, Ramos C, Ayuso C
Molecular analysis of the ABCA4 gene for reliable detection of allelic variations in Spanish patients: identification of 21 novel variants.
Br J Ophthalmol. 2009 May;93(5):614-21. Epub 2008 Nov 21., [PMID:19028736]
Abstract [show]
BACKGROUND/AIMS: Mutations in ABCA4 have been associated with autosomal recessive Stargardt disease (STGD), a few cases with autosomal recessive cone-rod dystrophy (arCRD) and autosomal recessive retinitis pigmentosa (arRP). The purpose of the study was threefold: to molecularly characterise families with no mutations or partially characterised families; to determine the specificity and sensitivity of the genotyping microarray; and to evaluate the efficiency of different methodologies. METHODS: 23 STGD, five arCRD and three arRP Spanish patients who were previously analysed with the ABCR400 microarray were re-evaluated. Results were confirmed by direct sequencing. In patients with either none or only one mutant allele, ABCA4 was further analysed by denaturing high-performance liquid chromatography (dHPLC) and multiplex ligation-dependent probe amplification (MLPA). Haplotype analysis was also performed. RESULTS: In the first analysis performed with the microarray, 27 ABCA4 variants (27/62; 43.5%) were found. By dHPLC scanning, 12 novel mutations were additionally identified. In addition, two previously described mutations, one false negative (1/62; 1.6%) and one false positive (1.6%), were detected. MLPA analysis did not reveal additional substitutions. The new strategy yielded an increment of 21% compared with the approach used in the first round. CONCLUSION: ABCA4 should be analysed by optimal combination of high-throughput screening techniques such as microarray, dHPLC and direct sequencing. To the best of our knowledge, this strategy yielded significant mutational spectrum identification in Spanish patients with ABCA4-associated phenotypes. Follow-up of patients, presenting an early onset of the disease and severe mutations, seems essential to perform accurate genotype-phenotype correlations and further characterisation of pathological ABCA4 alleles.
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 Clinical science Br J Ophthalmol 2009;93:614-621. doi:10.1136/bjo.2008.145193 Table 1 Clinical findings of the Spanish patients with Stargardt disease (STGD), autosomal recessive cone-rod dystrophy and autosomal recessive retinitis pigmentosa Pedigree Age (years) Age (years) of onset Visual acuity Diagnosis Allele 1 Allele 2 Segregation OD OS Nucleotide changes (exons) Amino acid change Nucleotide changes (exons) Amino acid change ARDM-135 42 24 0.4 0.6 STGD c.5882G.A(42) p.Gly1961Glu c.1029_1030insT(8) p.Asn344fsX NP ARDM-240 15 13 0.2 0.16 STGD c.5882G.A(42) p.Gly1961Glu c.2285C.A(15) p.Ala762Glu Yes ARDM-225 32 25 0.25 0.50 STGD c.5882G.A(42) p.Gly1961Glu c.6559C.T(48) p.Gln2187X Yes ARDM-164 21 11 NA STGD c.3386G.T(23) p.Arg1129Leu c.700C.T(6) p.Gln234X Yes ARDM-162 50 16 0.1 0.1 STGD c.3386G.T(23) p.Arg1129Leu ND ND Yes ARDM-198 27 19 0.1 0.1 STGD c.3386G.T(23) p.Arg1129Leu ND ND NP ARDM-125 31 9 0.3 0.4 STGD c.3211insGT(22) FS p.KNLFA1876dup Yes ARDM-158 24 9 0.2 0.2 STGD c.3211insGT(22) FS c.4537delC(30) p.Gln1513fsX1525 NP ARDM-165 40 30 NA STGD c.3211insGT(22) FS ND ND NP ARDM-167 49 23 0.05 0.05 STGD c.3211insGT(22) FS ND ND NP ARDM-146 32 13 0.06 0.1 STGD c.3056C.T(21) p.Thr1019Met c.6140T.A(44) p.Ile2047Asn Yes ARDM-40 46 9 0.1 0.1 STGD c.3056C.T(21) p.Thr1019Met c.3943C.T(27) p.Gln1315X Yes ARDM-90 26 8 Hand moving STGD c.5929G.A (43) p.Gly1977Ser IVS21-2A.T Yes ARDM-181 57 16 0.1 0.09 STGD c.3323G.A (22) p.Arg1108His IVS38+5G.A Yes ARDM-197 35 15 0.1 0.1 STGD c.4793C.A(34) (false +) p.Ala1598Asp (false +) c.5172G.T(36) p.Trp1724Cys Yes ARDM-183 63 55 0.150 0.175 STGD c.6079C.T(44) p.Leu2027Phe c.5929G.A(43) (false -) p.Gly1977Ser (false -) NP ARDM-38 35 6 0.01 0.02 STGD c.1804C.T(13) p.Arg602Trp c.4739delT(33) p.Leu1580fs Yes ARDM-163 48 32 0.01 0.32 STGD c.4457C.T(30) p.Pro1486Leu ND ND Yes ARDM-166 42 39 NA STGD c.6320G.A(46) p.Arg2107His ND ND Yes ARDM-222 26 23 NA STGD c.2791G.A(19) p.Val931Met ND ND NP ARDM-160 30 5 0.25 0.1 STGD ND ND ND ND Yes ARDM-173 49 7 NA STGD ND ND ND ND Yes ARDM-205 NA NA NA STGD c.4919G.A(35) p.Arg1640Gln ND ND NP ARDM-247 30 12 0.05 0.1 CRD c.3386G.T(23) p.Arg1129Leu c.6410G.A(47) p.Cys2137Tyr Yes ARDM-99 59 46 0.05 0.05 CRD c.4297G.A(29) p.Val1433Ile ND ND NP ARDM-131 27 15 0.9 0.7 CRD c.2701A.G(18) p.Thr901Ala ND ND Yes ARDM-100 28 4 0.2 0.16 CRD ND ND ND ND Yes ARDM-142 30 25 0.8 0.5 CRD ND ND ND ND Yes RP-773 38 20 0.05 0.05 RP c.33N86G.T(23) p.Arg1129Leu ND ND NP RP-959 53 10 0.1 0.1 RP c.466A.G(5) p.Ile156Val ND ND Yes RP-1058 37 6 0.2 0.6 RP c.4297G.A(29) p.Val1433Ile ND ND NP Twenty-seven out of 31 subjects were found to be compound heterozygous for mutations in the ABCA4 gene detected by microarray.
X
ABCA4 p.Ile156Val 19028736:80:2498
status: NEW125 Family RP-959 was previously analysed by the genotyping microarray, and the p.Ile156Val allele was detected.20 This variant has been associated with the STGD phenotype.
X
ABCA4 p.Ile156Val 19028736:125:78
status: NEW126 Family RP-959 was previously analysed by the genotyping microarray, and the p.Ile156Val allele was detected.20 This variant has been associated with the STGD phenotype.
X
ABCA4 p.Ile156Val 19028736:126:78
status: NEW[hide] Spectrum of the ABCA4 gene mutations implicated in... Invest Ophthalmol Vis Sci. 2007 Mar;48(3):985-90. Valverde D, Riveiro-Alvarez R, Aguirre-Lamban J, Baiget M, Carballo M, Antinolo G, Millan JM, Garcia Sandoval B, Ayuso C
Spectrum of the ABCA4 gene mutations implicated in severe retinopathies in Spanish patients.
Invest Ophthalmol Vis Sci. 2007 Mar;48(3):985-90., [PMID:17325136]
Abstract [show]
PURPOSE: The purpose of this study is to describe the spectrum of mutations in the ABCA4 gene found in Spanish patients affected with several retinal dystrophies. METHODS: Sixty Spanish families with different retinal dystrophies were studied. Samples were analyzed for variants in all 50 exons of the ABCA4 gene by screening with the ABCR400 microarray, and results were confirmed by direct sequencing. Haplotype analyses were also performed. For those families with only one mutation detected by the microarray, denaturing (d)HPLC was performed to complete the mutational screening of the ABCA4 gene. RESULTS: The sequence analysis of the ABCA4 gene led to the identification of 33 (27.5%) potential disease-associated alleles among the 60 patients. These comprised 16 distinct sequence variants in 25 of the 60 subjects investigated. For autosomal recessive cone-rod dystrophy (arCRD), we found that 50% of the CRD families with the mutation had two recurrent changes (2888delG and R943Q). For retinitis pigmentosa (RP) and autosomal dominant macular dystrophy (adMD), one putative disease-associated allele was identified in 9 of the 27 and 3 of the 7 families, respectively. CONCLUSIONS: In the population studied, ABCA4 plays an important role in the pathogenesis of arCRD. However, mutations in this gene are less frequently identified in other retinal dystrophies, like RP or adMD, and therefore it is still not clear whether ABCA4 is involved as a modifying factor or the relationship is a fortuitous association.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 TABLE 1. Genetic Analyses of ABCA4 Mutations in Three Families with Autosomal Dominant Macular Dystrophy Family Allele 1 Allele 2 Haplotype AnalysisNucleotide Change Amino Acid Change Nucleotide Change Amino Acid Change ADDM-59 [5582G3A; 6764G3T] [G1961E; S22551] Excluded ADDM-92 466A3G I156V Not done ADDM-105 2828G3A R943Q Not done No change has been detected as allele 2.
X
ABCA4 p.Ile156Val 17325136:56:288
status: NEW68 For family ADDM-92, a mutation in the heterozygous state, I156V, was detected.
X
ABCA4 p.Ile156Val 17325136:68:58
status: NEW87 TABLE 3. Genetic Analyses of ABCA4 Changes in Nine Families with Autosomal Recessive RP Family Allele 1 Allele 2 Nucleotide Change Amino Acid Change Nucleotide Change Amino Acid Change SRP-716 6764G3T S2255I (likely nonpathogenic) c.858 ؉8T3G SRP-766 2300T3A V767D c.858 ؉8T3G SRP-775 466A3G I156V c.858 ؉8T3G SRP-818 6764G3T S2255I (likely nonpathogenic) SRP-834 c.5547ϩ5G3A Splice acceptor SRP-854 6764G3T S2255I B57 466A3G I156V B173 2828G3A R943Q G5466A L1821L B278 2701A3G T901A [G1961E; S2255I] did not support the pathologic role of this mutation in the family.
X
ABCA4 p.Ile156Val 17325136:87:304
status: NEWX
ABCA4 p.Ile156Val 17325136:87:450
status: NEW88 In family ADDM-92, we detected the mutation I156V, which has been associated with a STGD recessive phenotype.21 The R152X mutation (located in exon 5, close to I156V) was present in a family with dominant STGD that demonstrated genetic linkage to the STGD region on 6q. FIGURE 2.
X
ABCA4 p.Ile156Val 17325136:88:44
status: NEWX
ABCA4 p.Ile156Val 17325136:88:160
status: NEW97 Therefore, we speculate about two possibilities: First, the R943Q change could be paired with a severer mutation not found in our study; or second, R943Q could have a modulating effect on another gene implicated in adMD, not discovered yet.
X
ABCA4 p.Ile156Val 17325136:97:45
status: NEW99 In the case of family ADDM-92, which had the I156V mutation, the clinical phenotype seemed to be severer than that in family ADDM105, which presented the mild allele R943Q.
X
ABCA4 p.Ile156Val 17325136:99:45
status: NEW55 TABLE 1. Genetic Analyses of ABCA4 Mutations in Three Families with Autosomal Dominant Macular Dystrophy Family Allele 1 Allele 2 Haplotype Analysis Nucleotide Change Amino Acid Change Nucleotide Change Amino Acid Change ADDM-59 [5582G3A; 6764G3T] [G1961E; S22551] Excluded ADDM-92 466A3G I156V Not done ADDM-105 2828G3A R943Q Not done No change has been detected as allele 2.
X
ABCA4 p.Ile156Val 17325136:55:289
status: NEW67 For family ADDM-92, a mutation in the heterozygous state, I156V, was detected.
X
ABCA4 p.Ile156Val 17325136:67:58
status: NEW85 TABLE 3. Genetic Analyses of ABCA4 Changes in Nine Families with Autosomal Recessive RP Family Allele 1 Allele 2 Nucleotide Change Amino Acid Change Nucleotide Change Amino Acid Change SRP-716 6764G3T S2255I (likely nonpathogenic) c.858 d19;8T3G SRP-766 2300T3A V767D c.858 d19;8T3G SRP-775 466A3G I156V c.858 d19;8T3G SRP-818 6764G3T S2255I (likely nonpathogenic) SRP-834 c.5547af9;5G3A Splice acceptor SRP-854 6764G3T S2255I B57 466A3G I156V B173 2828G3A R943Q G5466A L1821L B278 2701A3G T901A [G1961E; S2255I] did not support the pathologic role of this mutation in the family.
X
ABCA4 p.Ile156Val 17325136:85:304
status: NEWX
ABCA4 p.Ile156Val 17325136:85:450
status: NEW86 In family ADDM-92, we detected the mutation I156V, which has been associated with a STGD recessive phenotype.21 The R152X mutation (located in exon 5, close to I156V) was present in a family with dominant STGD that demonstrated genetic linkage to the STGD region on 6q. FIGURE 2.
X
ABCA4 p.Ile156Val 17325136:86:44
status: NEWX
ABCA4 p.Ile156Val 17325136:86:160
status: NEW[hide] The ABCA4 gene in autosomal recessive cone-rod dys... Am J Hum Genet. 2002 Dec;71(6):1480-2. Ducroq D, Rozet JM, Gerber S, Perrault I, Barbet D, Hanein S, Hakiki S, Dufier JL, Munnich A, Hamel C, Kaplan J
The ABCA4 gene in autosomal recessive cone-rod dystrophies.
Am J Hum Genet. 2002 Dec;71(6):1480-2., [PMID:12515255]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
30 Among these 13 patients, 2 were homozygotes (from two consanguineous families), 4 were compound heterozygotes, and 7 were Letters to the Editor 1481 Table 1 ABCA4 Mutations in Patients with CRD Patient ABCA4 ALLELE 1 ABCA4 ALLELE 2 OriginNucleotide Change Effect Nucleotide Change Effect 16 AAC 286 GAC N96D - - France 52 ATC 466 GTC I156V - - North Africa 57 ATC 466 GTC I156V GGG 1819 AGG G607R North Africa 51 CGA 455 CAA 5084ϩ1G/A R152Q Frameshift CGC 3323 TGC AGT 6764 ATT R1108C S2256I France 11 CGT 764 TGT R255C - - France 41 GCC 3113 GTC A1038V - - France 60 CTG 3602 CGG L1201R AGT 6764 ATT S2256I South Africa 21 CTC 5908 TTC L1970F - - France 30 AGT 6764 ATT S2256I - - Africa 48 GAA 3259 TAA E1087X - - France 2 2617 del CT Frameshift 2617 del CT Frameshift Portugal 5 571-2A/G Frameshift 571-2A/G Frameshift Morocco 61 CGG 4918 TGG R1602W GGC 5929 AGC G1977S England single heterozygotes (see table 1).
X
ABCA4 p.Ile156Val 12515255:30:335
status: NEWX
ABCA4 p.Ile156Val 12515255:30:373
status: NEW31 Among these 13 patients, 2 were homozygotes (from two consanguineous families), 4 were compound heterozygotes, and 7 were Letters to the Editor 1481 Table 1 ABCA4 Mutations in Patients with CRD Patient ABCA4 ALLELE 1 ABCA4 ALLELE 2 Origin Nucleotide Change Effect Nucleotide Change Effect 16 AAC 286 GAC N96D - - France 52 ATC 466 GTC I156V - - North Africa 57 ATC 466 GTC I156V GGG 1819 AGG G607R North Africa 51 CGA 455 CAA 5084af9;1G/A R152Q Frameshift CGC 3323 TGC AGT 6764 ATT R1108C S2256I France 11 CGT 764 TGT R255C - - France 41 GCC 3113 GTC A1038V - - France 60 CTG 3602 CGG L1201R AGT 6764 ATT S2256I South Africa 21 CTC 5908 TTC L1970F - - France 30 AGT 6764 ATT S2256I - - Africa 48 GAA 3259 TAA E1087X - - France 2 2617 del CT Frameshift 2617 del CT Frameshift Portugal 5 571-2A/G Frameshift 571-2A/G Frameshift Morocco 61 CGG 4918 TGG R1602W GGC 5929 AGC G1977S England single heterozygotes (see table 1).
X
ABCA4 p.Ile156Val 12515255:31:336
status: NEWX
ABCA4 p.Ile156Val 12515255:31:374
status: NEW[hide] An analysis of ABCR mutations in British patients ... Invest Ophthalmol Vis Sci. 2000 Jan;41(1):16-9. Papaioannou M, Ocaka L, Bessant D, Lois N, Bird A, Payne A, Bhattacharya S
An analysis of ABCR mutations in British patients with recessive retinal dystrophies.
Invest Ophthalmol Vis Sci. 2000 Jan;41(1):16-9., [PMID:10634594]
Abstract [show]
PURPOSE: Several reports have shown that mutations in the ABCR gene can lead to Stargardt disease (STGD)/fundus flavimaculatus (FFM), autosomal recessive retinitis pigmentosa (arRP), and autosomal recessive cone-rod dystrophy (arCRD). To assess the involvement of ABCR in these retinal dystrophies, the gene was screened in a panel of 70 patients of British origin. METHODS: Fifty-six patients exhibiting the STGD/FFM phenotype, 6 with arRP, and 8 with arCRD, were screened for mutations in the 50 exons of the ABCR gene by heteroduplex analysis and direct sequencing. Microsatellite marker haplotyping was used to determine ancestry. RESULTS: In the 70 patients analyzed, 31 sequence changes were identified, of which 20 were considered to be novel mutations, in a variety of phenotypes. An identical haplotype was associated with the same pair of in-cis alterations in 5 seemingly unrelated patients and their affected siblings with STGD/FFM. Four of the aforementioned patients were found to carry three alterations in the coding sequence of the ABCR gene, with two of them being in-cis. CONCLUSIONS: These results suggest that ABCR is a relatively polymorphic gene. Because putative mutations have been identified thus far only in 25 of 70 patients, of whom only 8 are compound heterozygotes, a large number of mutations have yet to be ascertained. The disease haplotype seen in the 5 patients carrying the same "complex" allele is consistent with the presence of a common ancestor.
Comments [show]
None has been submitted yet.
No. Sentence Comment
45 Neither of these putative TABLE 1. List of Mutations Found in 70 Patients of British Origin Nucleotide Change Amino Acid Change No. of Patients (/70) Phenotype No. of Controls (/96) G161A Cys-54-Tyr 1 STG/FFM NF A286G Asn-96-Asp 1 STG/FFM NF A286C Asn-96-His 1 STG/FFM NF A466G Ile-156-Val 1 STG/FFM NF C1220T Ala-407-Val 6 STG/FFM, arCRD NF T1271C Val-424-Ala 2 STG/FFM, arRP NF C1335G Ser-445-Arg 1 STG/FFM NF C1804T Arg-602-Trp 1 STG/FFM NF C2337A Cys-779-Ter 1 STG/FFM NF *G2588C Gly-863-Ala 5 STG/FFM 2/176 3392delC 1147 Ter 1 STG/FFM NF T4286C Val-1429-Ala 1 STG/FFM NF 4774-2A3C Splice acceptor 2 STG/FFM NF †C4918T Arg-1640-Trp 1 STG/FFM NF C5107G Gln-1703-Lys 1 STG/FFM NF 5161delAC Frameshift 1 STG/FFM NF C5337G Tyr-1779-Ter 1 STG/FFM NF C6088T Arg-2030-Ter 1 arCRD NF 6282ϩ7G3A Splice donor 1 STG/FFM NF G6449A Cys-2150-Tyr 2 arCRD NF A6479G Lys-2160-Arg 1 STG/FFM NF * Independently reported by Allikmets et al.6 † Independently reported by Rozet et al.8 NF, not found in 96 ethnically matched control individuals.
X
ABCA4 p.Ile156Val 10634594:45:278
status: NEW[hide] Clinical and molecular genetic study of 12 Italian... Genet Mol Res. 2012 Dec 17;11(4):4342-50. doi: 10.4238/2012.October.9.3. Oldani M, Marchi S, Giani A, Cecchin S, Rigoni E, Persi A, Podavini D, Guerrini A, Nervegna A, Staurenghi G, Bertelli M
Clinical and molecular genetic study of 12 Italian families with autosomal recessive Stargardt disease.
Genet Mol Res. 2012 Dec 17;11(4):4342-50. doi: 10.4238/2012.October.9.3., [PMID:23096905]
Abstract [show]
Stargardt disease was diagnosed in 12 patients from 12 families using complete ophthalmologic examination, fundus photography, fundus autofluorescence, and spectral-domain optical coherence tomography. DNA was extracted for polymerase chain reaction (PCR) and direct DNA sequencing (ABCA4 gene). Genetic counseling and eye examination were offered to 16 additional family members. Various patterns of presentation were observed in patients with clinical diagnoses of Stargardt disease. The genetic study identified 2 mutations in 75% of families (9/12); a second mutation could not be found in the remaining 25% of families (3/12). The most frequent mutation was G1961E, found in 17% of families (2/12). This finding is similar to that of a previous analysis report of an Italian patient series. Four new mutations were also identified: Tyr1858Asp, Leu1195fsX1196, p.Tyr850Cys, and p.Thr959Ala. Our results suggest that PCR and direct DNA sequencing are the most appropriate techniques for the analysis of the ABCA4 gene. However, this method requires supplementation with specific PCR analysis to diagnose large deletions. The study of the families identified healthy carriers and affected subjects in presymptomatic stages and was also useful for evaluating the risk of transmission to progeny. Combined ophthalmologic and genetic evaluation enabled better clinical management of these families.
Comments [show]
None has been submitted yet.
No. Sentence Comment
69 of patients Subject Allele 1 Allele 2 Age of diagnosis (years) Visual acuity Right eye Left eye 1 F1 ID81 Tyr1858Asp Met1Val; Arg2030Gln 22 20/50 20/32 2 F2 ID220 Ile156Val Gly607Arg; Gly1961Glu 30 20/800 20/400 3 F3 ID362 Met1Val Gly1961Glu; Arg2030Gln 60 20/40 20/32 4 F4 ID197 Asp1532Asn Arg2030term 40 20/32 20/32 5 F6 ID363 Tyr362Term Gly863Ala 16 20/200 20/250 6 F7 ID365 Arg1098Cys Cys1488Arg 50 20/32 20/800 7 F8 ID394 Arg18Trp Val767Asp 10 20/800 20/800 8 F9 ID396 IVS40+5G>A IVS13+1G>A 19 20/40 20/50 9 F10 ID366 p.Gln1513Profs*42 - 20 20/200 20/200 10 F12 ID377 Leu1195Argfs*2 - 50 20/32 20/20 11 F13 ID4 Cys2150Tyr - 70 20/400 20/400 12 F17 ID457 p.Tyr850Cys p.Thr959Ala 50 20/20 20/40 F1 = family 1; ID = reference code to a specific patient.
X
ABCA4 p.Ile156Val 23096905:69:197
status: NEW[hide] A longitudinal study of stargardt disease: clinica... Am J Ophthalmol. 2013 Jun;155(6):1075-1088.e13. doi: 10.1016/j.ajo.2013.01.018. Epub 2013 Mar 15. Fujinami K, Lois N, Davidson AE, Mackay DS, Hogg CR, Stone EM, Tsunoda K, Tsubota K, Bunce C, Robson AG, Moore AT, Webster AR, Holder GE, Michaelides M
A longitudinal study of stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations.
Am J Ophthalmol. 2013 Jun;155(6):1075-1088.e13. doi: 10.1016/j.ajo.2013.01.018. Epub 2013 Mar 15., [PMID:23499370]
Abstract [show]
PURPOSE: To investigate the clinical and electrophysiologic natural history of Stargardt disease and correlate with the genotype. DESIGN: Cohort study of 59 patients. METHODS: Clinical history, examination, and electrophysiologic assessment were undertaken in a longitudinal survey. Patients were classified into 3 groups based on electrophysiologic findings, as previously published: Group 1 had dysfunction confined to the macula; Group 2 had macular and generalized cone system dysfunction; and Group 3 had macular and both generalized cone and rod system dysfunction. At baseline, there were 27 patients in Group 1, 17 in Group 2, and 15 in Group 3. Amplitude reduction of >50% in the relevant electroretinogram (ERG) component or a peak time shift of >3 ms for the 30 Hz flicker ERG or bright flash a-wave was considered clinically significant ERG deterioration. Molecular screening of ABCA4 was undertaken. RESULTS: The mean age at baseline was 31.7 years, with the mean follow-up interval being 10.5 years. A total of 22% of patients from Group 1 showed ERG group transition during follow-up, with 11% progressing to Group 2 and 11% to Group 3. Forty-seven percent of patients in Group 2 progressed to Group 3. There was clinically significant ERG deterioration in 54% of all subjects: 22% of Group 1, 65% of Group 2, and 100% of Group 3. At least 1 disease-causing ABCA4 variant was identified in 47 patients. CONCLUSIONS: All patients with initial rod ERG involvement demonstrated clinically significant electrophysiologic deterioration; only 20% of patients with normal full-field ERGs at baseline showed clinically significant progression. Such data assist counseling by providing more accurate prognostic information and are also highly relevant in the design, patient selection, and monitoring of potential therapeutic interventions.
Comments [show]
None has been submitted yet.
No. Sentence Comment
89 Clinical Data and Molecular Genetic Status of 59 Patients With Stargardt Disease Pt Onset (y) Age (y) logMAR VA Variants Identifieda BL FU BL FU 1 16 17 26 0.0/1.0 0.0/0.48 c.768G>T / p.Gly863Ala / p.Arg943Gln 2 15 17 25 0.78/0.78 1.0/1.0 p. Arg1443His 3 11 18 27 0.78/1.0 1.0/1.0 p.Trp439* / p.Gly863Ala / p.Leu1970Phe 4 19 21 32 0.78/0.78 1.0/1.0 p.Leu2027Phe 5 10 22 30 0.48/0.48 1.0/0.78 p.Gly863Ala / p.Arg943Gln / c.5461-10 T>C 6 18 26 37 0.78/1.0 1.0/1.0 p.Pro1380Phe 7 25 28 40 0.78/1.0 1.3/0.78 ND 8 24 29 38 1.0/0.78 1.0/1.0 p.Phe418Ser / p.Leu2027Phe 9 24 31 44 1.0/1.0 1.3/1.0 c.4253&#fe;5 G>T / p.Gly1507Arg 10 26 32 44 0.78/0.78 1.0/1.0 p.Cys1490Tyr / p.Arg2030Gln 11 31 34 46 0.18/0.3 0.6/0.7 ND 12 17 35 47 1.0/1.0 1.0/1.0 p.Asn96His 13 23 35 45 1.0/0.3 1.0/0.48 p.Gly1513Profs*1554 14 33 37 48 0.18/1.48 1.0/1.3 ND 15 38 40 51 0.18/0.78 1.0/1.0 p.Arg2107His 16 42 43 53 0.0/0.0 1.0/1.0 ND 17 22 48 59 1.0/1.0 1.0/1.0 p.Cys54Tyr 18 20 49 59 1.0/0.6 1.0/1.0 p.Pro1380Leu / p.Gly1961Glu 19 35 50 61 1.0/0.3 1.0/1.0 p.Arg1108Cys 20 25 56 67 1.3/0.18 1.0/1.0 p.Trp439* / p.Gly863Ala 21 48 59 71 1.0/0.78 1.0/1.0 p. Ile156 Val / p. Cys1455Arg / p. Phe1839Ser 22 21 22 31 0.3/1.0 1.0/1.0 p.Arg2107His 23 21 23 33 1.0/1.0 1.0/1.0 p.Gly863Ala 24 48 64 73 0.0/1.0 0.18/3.0 p.Tyr1652* 25 17 19 29 0.78/0.3 1.0/1.0 c.5461-10 T>C 26 17 21 33 1.0/0.78 1.0/1.0 ND 27 27 53 66 1.78/1.78 1.3/1.0 p.Ser1071Cysfs*1084 28 5 14 21 0.78/0.78 1.0/1.0 p.Arg408* / p.Val675lle 29 9 15 27 1.08/1.08 1.0/1.0 p.Cys2150Tyr 30 14 24 32 1.0/0.78 1.0/1.0 ND 31 18 28 39 1.0/1.0 1.0/1.0 p.Gly863Ala / p.Arg1108Cys / p.Arg943Gln 32 14 29 37 1.0/1.0 1.0/1.0 p.Arg653Cys / p.Arg2030Gln 33 19 29 40 1.0/1.0 1.0/1.08 ND 34 34 40 49 0.3/0.48 1.0/1.0 p.Gly863Ala / p.Glu1087Lys 35 25 43 54 1.0/1.0 1.0/1.0 p.Cys54Tyr / p.Gly863Ala 36 38 60 69 1.0/1.0 1.3/1.08 p.Val931Met / c.5461-10 T>C 37 10 11 20 1.0/0.78 1.3/1.3 p.Pro1380Leu 38 10 15 23 1.0/1.0 1.3/1.3 p.Ser1071Cysfs*1084 / p.Pro1380Leu 39 24 25 38 1.56/0.3 2.0/2.0 c.5461-10 T>C / c.5714&#fe;5 G>A 40 18 26 36 1.3/1.3 2.0/1.3 ND 41 32 33 45 0.48/0.48 1.0/1.0 ND 42 32 35 46 1.3/0.0 3.0/1.0 p.Cys54Tyr 43 30 35 45 0.48/0.48 2.0/1.3 ND 44 15 41 49 1.3/1.3 2.0/1.3 p.Asn965Ser 45 8 8 20 0.78/0.78 1.0/1.0 p.Thr1019Met 46 10 11 23 1.0/1.0 1.0/1.0 p.Thr1019Met 47 8 12 24 2.0/1.56 1.78/1.48 p.Cys2150Tyr 48 17 18 26 1.0/0.78 1.3/1.0 c.5461-10 T>C / p.Leu2027Phe 49 8 21 33 1.3/1.3 2.0/2.0 p.Asp574Aspfs*582 50 8 27 39 2.0/1.56 1.78/1.48 c.5461-10 T>C 51 24 31 43 1.18/1.18 1.08/1.3 p.Arg1640Trp / p.Leu2027Phe Continued on next page respective electrophysiologic traces appear in Figure 2.
X
ABCA4 p.Ile156Val 23499370:89:1127
status: NEW108 Clinical Data and Molecular Genetic Status of 59 Patients With Stargardt Disease (Continued) Pt Onset (y) Age (y) logMAR VA Variants Identifieda BL FU BL FU 52 11 31 42 1.3/1.3 2.0/2.0 p.Arg1108His 53 5 32 43 2.0/2.0 2.0/2.0 c.5461-10 T>C / p.Cys2150Tyr 54 5 32 43 2.0/2.0 2.0/2.0 c.5461-10 T>C / p.Cys2150Tyr 55 7 36 47 1.3/1.3 3.0/1.3 c.5461-10 T>C / p.Cys2150Tyr 56 13 39 50 1.25/1.56 3.0/3.0 ND 57 23 42 52 1.56/1.0 1.0/1.0 p.Leu747Cysfs*787 58 40 43 54 0.18/0.18 0.78/0.78 ND 59 23 54 65 0.78/1.0 1.0/1.0 p.Ile156Val BL &#bc; baseline; FU &#bc; follow-up; logMAR &#bc; logarithm of minimal angle of resolution; ND &#bc; not detected; Pt &#bc; patient; VA &#bc; visual acuity.
X
ABCA4 p.Ile156Val 23499370:108:512
status: NEW[hide] Clinical and molecular analysis of Stargardt disea... Am J Ophthalmol. 2013 Sep;156(3):487-501.e1. doi: 10.1016/j.ajo.2013.05.003. Fujinami K, Sergouniotis PI, Davidson AE, Wright G, Chana RK, Tsunoda K, Tsubota K, Egan CA, Robson AG, Moore AT, Holder GE, Michaelides M, Webster AR
Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function.
Am J Ophthalmol. 2013 Sep;156(3):487-501.e1. doi: 10.1016/j.ajo.2013.05.003., [PMID:23953153]
Abstract [show]
PURPOSE: To describe a cohort of patients with Stargardt disease who show a foveal-sparing phenotype. DESIGN: Retrospective case series. METHODS: The foveal-sparing phenotype was defined as foveal preservation on autofluorescence imaging, despite a retinopathy otherwise consistent with Stargardt disease. Forty such individuals were ascertained and a full ophthalmic examination was undertaken. Following mutation screening of ABCA4, the molecular findings were compared with those of patients with Stargardt disease but no foveal sparing. RESULTS: The median age of onset and age at examination of 40 patients with the foveal-sparing phenotype were 43.5 and 46.5 years. The median logMAR visual acuity was 0.18. Twenty-two patients (22/40, 55%) had patchy parafoveal atrophy and flecks; 8 (20%) had numerous flecks at the posterior pole without atrophy; 7 (17.5%) had mottled retinal pigment epithelial changes; 2 (5%) had multiple atrophic lesions, extending beyond the arcades; and 1 (2.5%) had a bull's-eye appearance. The median central foveal thickness assessed with spectral-domain optical coherence tomographic images was 183.0 mum (n = 33), with outer retinal tubulation observed in 15 (45%). Twenty-two of 33 subjects (67%) had electrophysiological evidence of macular dysfunction without generalized retinal dysfunction. Disease-causing variants were found in 31 patients (31/40, 78%). There was a higher prevalence of the variant p.Arg2030Gln in the cohort with foveal sparing compared to the group with foveal atrophy (6.45% vs 1.07%). CONCLUSIONS: The distinct clinical and molecular characteristics of patients with the foveal-sparing phenotype are described. The presence of 2 distinct phenotypes of Stargardt disease (foveal sparing and foveal atrophy) suggests that there may be more than 1 disease mechanism in ABCA4 retinopathy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
141 Allele Frequencies of 72 ABCA4 Variants Identified in a Comparison Groupa With the Typical Stargardt Disease (140 Patients Without Evidence of Foveal Sparing on Autofluorescence Imaging) Exon Nucleotide Substitution and Amino Acid Change Number of Alleles Allele Frequency 2 c.71G>A, p.Arg24His 1 0.36% 2 c.161G>A, p.Cys54Tyr 3 1.07% 3 c.223T>G, p.Cys75Gly 1 0.36% 5 c.455G>A, p.Arg152Gln 1 0.36% 5 c.454C>T, p.Arg152* 1 0.36% 5 c.466 A>G, p.Ile156Val 2 0.71% 6 c.634C>T, p. Arg212Cys 3 1.07% 6 c.656G>C, p.Arg219Thr 1 0.36% 6 c.666_678delAAAGACGGTGCGC, p.Lys223_Arg226delfs 2 0.71% 6 c.768G>T, Splicing site 4 1.42% 8 c.1037A>C, p.Lys346Thr 1 0.36% 10 c.1222C>T, p.Arg408* 3 1.07% 12 c.1622T>C, p.Leu541Pro 2 0.71% 12 c.1648 G>T, p.Gly550* 1 0.36% 13 c.1804C>T, p.Arg602Trp 1 0.36% 13 c.1817G>A, p.Gly606Asp 1 0.36% 13 c.1922G>C, p.Cys641Ser 1 0.36% Int 13 c.1937&#fe;1G>A, Splicing site 2 0.71% 14 c.1957C>T, p.Arg653Cys 2 0.71% 17 c.2588G>C, p.Gly863Ala 19 6.79% 18 c.2701A>G, p.Thr901Ala 1 0.36% 19 c.2791G>A, p.Val931Met 2 0.71% 19 c.2894A>G, p.Asn965Ser 1 0.36% 20 c.2966T>C, p.Vla989Ala 3 1.07% 20 c.2971G>C, p.Gly991Arg 2 0.71% 21 c.3056C>T, p.Thr1019Met 1 0.36% 21 c.3113C>T, p.Ala1038Val 3 1.07% 21 c.3064G>A, p.Glu1022Lys 2 0.71% 22 c.3211_3212insGT, p.Ser1071Cysfs 6 2.14% 22 c.3259G>A, p.Glu1087Lys 4 1.43% 22 c.3292C>T, p.Arg1098Cys 1 0.36% 22 c.3322C>T, p.Arg1108Cys 5 1.79% 22 c.3323G>A, p.Arg1108His 1 0.36% 23 c.3364G>A, p.Glu1122Lys 1 0.36% 23 c.3386G>A, p.Arg1129His 1 0.36% 24 c.3602T>G, p.Leu1201Arg 3 1.07% 27 c.3898C>T, p.Arg1300* 2 0.71% 28 c.4139C>T, p.Pro1380Leu 14 5.00% 28 c.4222T>C, p.Trp1408Arg 1 0.36% 28 c.4234C>T, p.Gly1412* 1 0.36% 28 c.4253&#fe;5G>T, Splice site 1 0.36% 28 c.4253&#fe;4C>T, Splice site 1 0.36% 29 c.4283C>T, p.Thr1428Met 1 0.36% 29 c.4319T>C, p.Phe1440Ser 1 0.36% 29 c.4462T>C, p.Cys1488Arg 1 0.36% 30 c.4469G>A, p.Cys1490Tyr 5 1.79% 30 c.4537_4538insC, p.Gly1513Profs 1 0.36% 31 c.4577C>T, p.Thr1526Met 2 0.71% 33 c.4715C>T, p.Thr1572Met 1 0.36% Continued on next page TABLE 3.
X
ABCA4 p.Ile156Val 23953153:141:442
status: NEW[hide] ABCA4 gene screening by next-generation sequencing... Invest Ophthalmol Vis Sci. 2013 Oct 11;54(10):6662-74. doi: 10.1167/iovs.13-12570. Fujinami K, Zernant J, Chana RK, Wright GA, Tsunoda K, Ozawa Y, Tsubota K, Webster AR, Moore AT, Allikmets R, Michaelides M
ABCA4 gene screening by next-generation sequencing in a British cohort.
Invest Ophthalmol Vis Sci. 2013 Oct 11;54(10):6662-74. doi: 10.1167/iovs.13-12570., [PMID:23982839]
Abstract [show]
PURPOSE: We applied a recently reported next-generation sequencing (NGS) strategy for screening the ABCA4 gene in a British cohort with ABCA4-associated disease and report novel mutations. METHODS: We identified 79 patients with a clinical diagnosis of ABCA4-associated disease who had a single variant identified by the ABCA4 microarray. Comprehensive phenotypic data were obtained, and the NGS strategy was applied to identify the second allele by means of sequencing the entire coding region and adjacent intronic sequences of the ABCA4 gene. Identified variants were confirmed by Sanger sequencing and assessed for pathogenicity by in silico analysis. RESULTS: Of the 42 variants detected by prescreening with the microarray, in silico analysis suggested that 34, found in 66 subjects, were disease-causing and 8, found in 13 subjects, were benign variants. We detected 42 variants by NGS, of which 39 were classified as disease-causing. Of these 39 variants, 31 were novel, including 16 missense, 7 splice-site-altering, 4 nonsense, 1 in-frame deletion, and 3 frameshift variants. Two or more disease-causing variants were confirmed in 37 (47%) of 79 patients, one disease-causing variant in 36 (46%) subjects, and no disease-causing variant in 6 (7%) individuals. CONCLUSIONS: Application of the NGS platform for ABCA4 screening enabled detection of the second disease-associated allele in approximately half of the patients in a British cohort where one mutation had been detected with the arrayed primer extension (APEX) array. The time- and cost-efficient NGS strategy is useful in screening large cohorts, which will be increasingly valuable with the advent of ABCA4-directed therapies.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 40 c.4926C>G p.S1642R DC c.5041_5055del GTGGTTGCCATCTGC p.V1681_C1685del DC 2 41 c.4956T>G p.Y1652* DC 1 42 c.5018&#fe;2T>C Splice site DC 1 43 c.5461-10T>C DC c.6385A>G p.S2129G PDC 2 44 c.5461-10T>C DC 1 45 c.5461-10T>C DC 1 46 c.5461-10T>C DC 1 47 c.5461-10T>C DC 1 48 c.5461-10T>C DC 1 49 c.5461-10T>C DC 1 50 c.5461-10T>C DC 1 51 c.5585-1G>A Splice site DC 1 52 c.5714&#fe;5G>A Splice site DC c.6209C>G p.T2070R DC 2 53 c.5882G>A p.G1961E DC c.2686A>G p.K896E B 1 54 c.5882G>A p.G1961E DC c.3050&#fe;1G>C Splice site DC 2 55 c.5882G>A p.G1961E DC c.3392delC/3393C>G p.A1131Gfs DC 2 56 c.5882G>A p.G1961E DC c.4539&#fe;2T>G Splice site DC 2 57 c.5882G>A p.G1961E DC c.4552A>C p.S1518R DC 2 58 c.5882G>A p.G1961E DC c.5899-2delA Splice site DC 2 59 c.5882G>A p.G1961E DC 1 60 c.6079C>T p.L2027F DC c.1906C>T p.Q636* DC 2 61 c.6079C>T p.L2027F DC c.3322C>T p.R1108C DC 2 Allele 2 (p.R1108C) was APEX-false-negative 62 c.6079C>T p.L2027F DC c.3370G>T p.D1124Y DC 2 63 c.6079C>T p.L2027F DC 1 64 c.6089G>A p.R2030Q DC c.4326C>A p.N1442K DC 2 65 c.6445C>T p.R2149* DC 1 66 c.6709A>C p.T2237P DC c.5899-3_5899-2delTA Splice site DC 2 67 c.2971G>C p.G991R B c.4538A>G p.Q1513R DC 1 68 c.3602T>G p.L1201R B c.1749G>C p.K583N DC 1 69 c.3602T>G p.L1201R B c.1982_1983insG p.A662fs DC 1 70 c.3602T>G p.L1201R B c.2972G>T p.G991V DC 1 71 c.4685T>C p.I1562T B c.3289A>T p.R1097* DC 1 72 c.6320G>A p.R2107H B c.2510T>C p.L837P DC 1 73 c.6320G>A p.R2107H B c.4352&#fe;1G>A Splice site DC 1 74 c.2701A>G p.T901A B 0 75 c.3602T>G p.L1201R B 0 76 c.4283C>T p.T1428M B 0 77 c.466A>G p.I156V B 0 78 c.466A>G p.I156V B 0 79 c.4715C>T p.T1572M B 0 Putative novel variants are shown in italics.
X
ABCA4 p.Ile156Val 23982839:56:1570
status: NEWX
ABCA4 p.Ile156Val 23982839:56:1594
status: NEW62 Hum Var Score (0-1) Site Wt CV Mt CV CV % Variation 3 c.161G>A p.C54Y 1 1 [ [ Lewis RA, et al. 11 Tol. 0.11 PRD 0.994 No change 1/13006 db SNP (rs150774447) 3 c.223T>G p.C75G 1 2 [ [ Lewis RA, et al. 11 Del. NA POD 0.603 No change ND 5 c.466A>G p.I156V 2 77, 78 [ [ Papaioannou M, et al. 16 Tol. 0.46 B 0.003 No change 16/13006 db SNP (rs112467008) Benign 6 c.655A>T p.R219* 1 11 [ Xi Q, et al. 27 ND 6 c.740A>C p.N247T 1 3 [ [ APEX Del. NA B 0.135 No change ND 6 c.768G>T Splice site 1 4 [ [ Klevering BJ, et al. 22 Tol. 0.56 NA Don. 70.4 58 Site broken (17.51) ND 9 c.1222C>T p.R408* 1 5 [ [ Webster AR, et al. 7 ND 12 c.1726G>C p.D576H 1 36 [ Downs K, et al. 25 POD 0.688 Acc. 68.1 39.1 Site broken (42.54) 1/13006 13 c.1804C>T p.R602W 1 6 [ [ Lewis RA, et al. 11 Del. 0.00 B 0.129 No change ND db SNP (rs 6179409) 13 c.1805G>A p.R602Q 1 7 [ [ Webster AR, et al. 7 Del. 0.04 PRD 0.513 Acc. 48.9 77.9 New site (&#fe;59.14) 2/13006 db SNP (rs61749410) 13 c.1906C>T p.Q636* 3 12, 13, 60 [ Zernant J, et al. 5 No change 1/13006 db SNP (rs145961131) 13 c.1922G>C p.C641S 1 8 [ [ Stenirri S, et al. 24 Del. 0.00 No change ND db SNP (rs61749416) 14 c.1957C>T p.R653C 2 9, 10 [ [ Rivera A, et al. 17 Del. 0.00 PRD 0.999 No change ND db SNP (rs61749420) 17 c.2588G>C p.G863A/ p.DelG863 5 11, 12, 13, 14, 15 [ [ Lewis RA, et al. 11 / Maugeri A, et al. 29 Del. 0.00 PRD 0.996 No change 68/13006 db SNP (rs76157638) 18 c.2701A>G p.T901A 1 74 [ [ APEX Tol. 0.82 B 0.008 23/13006 db SNP (rs139655975) Benign 19 c.2894A>G p.N965S 1 16 [ [ Lewis RA, et al. 11 Del. 0.03 PRD 0.981 Acc. 53.4 82.3 New site (&#fe;54.26) ND db SNP (rs201471607) 20 c.2971G>C p.G991R 1 67 [ [ Yatsenko AN, et al. 13 Del. 0.02 PRD 0.999 No change 28/13006 db SNP (rs147484266) Benign 22 c.3064G>A p.E1022K 2 17, 18 [ [ Webster AR, et al. 7 Del. 0.00 PRD 1.000 No change ND db SNP (rs61749459) 22 c.3208_3209insGT p.S1071fs 5 19, 20, 21, 22, 25 [ [ APEX ND False-negative in APEX in patient 25 22 c.3292C>T p.R1098C 1 23 [ [ Rivera A, et al. 17 Del. NA PRD 0.999 No change ND 22 c.3322C>T p.R1108C 3 16, 24, 61 [ [ Rozet JM, et al. 10 Del. 0.00 PRD 0.986 No change 1/13006 db SNP (rs61750120) False-negative in APEX in patients 16 and 61 23 c.3386G>A p.R1129H 1 25 [ Zernant J, et al. 5 PRD 0.989 No change ND False-negative in NGS in patient 25 24 c.3602T>G p.L1201R 4 72, 73, 74, 79 [ [ Lewis RA, et al. 11 Tol. 0.37 B 0.052 Don. 61.3 73.7 New site (20.08) 416/13006 db SNP (rs61750126) Benign 28 c.4139C>T p.P1380L 7 30, 31, 32, 33, 34, 35, 36 [ [ Lewis RA, et al. 11 Del. 0.01 B 0.377 No change 2/13006 db SNP (rs61750130) 28 c.4234C>T p.Q1412* 1 33 [ [ Rivera A, et al. 17 ND db SNP (rs61750137) 29 c.4283C>T p.T1428M 1 76 [ [ APEX Tol. 0.15 B 0.010 No change 2/13006 db SNP (rs1800549) Benign 29 c.4319T>C p.F1440S 1 34 [ [ Lewis RA, et al. 11 Del. 0.00 POD 0.744 No change ND dbSNP (rs61750141) 29 c.4326C>A p.N1442K 1 64 [ Zernant J, et al. 5 Tol. NA POD 0.374 No change ND 29 c.4328G>A p.R1443H 1 35 [ [ Rivera A, et al. 17 Del. 0.02 PRD 0.999 No change 1/13006 dbSNP (rs61750142) IVS29 c.4352&#fe;1G>A Splice site 1 73 [ Zernant J, et al. 5 Don. 82.3 55.4 WT site broken (32.62) ND 30 c.4469G>A p.C1490Y 2 36, 37 [ [ Lewis RA, et al. 11 Del. 0.00 PRD 0.994 No change ND dbSNP (rs61751402) 30 c.4538A>G p.Q1513R 1 67 [ Webster AR, et al. 7 Tol. NA Benign 0.043 Acc. 91.7 62.8 Site broken (31.55) ND T ABLE 3. Continued Exon/ IVS Nucleotide Substitution Protein Change/ Effect N of Alleles Identified Pt Method Previous Report SIFT Polyphen 2 HSF Matrix Allele Freq. by EVS Reference Comment APEX NGS Pred. Tol. Index (0-1) Pred.
X
ABCA4 p.Ile156Val 23982839:62:247
status: NEW