ABCA4 p.Arg219Thr
ClinVar: |
c.656G>C
,
p.Arg219Thr
?
, not provided
|
Predicted by SNAP2: | A: D (71%), C: D (71%), D: D (75%), E: D (71%), F: D (71%), G: D (75%), H: D (59%), I: D (71%), K: N (57%), L: D (71%), M: D (71%), N: D (53%), P: D (75%), Q: D (59%), S: D (59%), T: N (57%), V: D (71%), W: D (80%), Y: D (66%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: N, H: N, I: D, K: N, L: D, M: N, N: N, P: N, Q: N, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Analysis of autofluorescent retinal images and mea... Exp Eye Res. 2010 Aug;91(2):143-52. Epub 2010 Apr 14. Chen B, Tosha C, Gorin MB, Nusinowitz S
Analysis of autofluorescent retinal images and measurement of atrophic lesion growth in Stargardt disease.
Exp Eye Res. 2010 Aug;91(2):143-52. Epub 2010 Apr 14., [PMID:20398653]
Abstract [show]
Current retinal imaging techniques using scanning laser ophthalmoscopy (SLO) provide a powerful mechanism for characterizing the topographical distribution of lipofuscin fluorophores and atrophic lesions (ALs) in retinal disease. In this paper we describe a novel Edge-Flow-Driven Variational Image Segmentation analysis to measure and evaluate progressive change in the area of ALs as well as regions of hyperfluorescence (HF). The algorithm is embedded in a series of almost completely automated image processing steps that allow rapid comparison of serial images. The sensitivity of the methodology to detect change was evaluated by measuring progression of AF lesion size in a cohort of Stargardt Macular Dystrophy (STGD) patients. Fifty-two STGD subjects (mean age = 41.0 +/- 16.6 years, range 9-78 yrs) at varying stages of disease participated in this prospective study. Twenty-four of the 52 subjects presented with atrophic lesions in one or both eyes on first evaluation. For this subgroup of subjects, the mean (+/-1 sd) follow-up time was 2.92 (+0.26) years (range 0.57-3.26 years) and the mean (+/-1 sd) rate of change was found to be approximately 0.94 (+/-0.87) mm(2)/year (range 0.2-2.13 mm(2)/yr). With this methodology, progressive enlargement of AL area was detectable in as little as one year, while regions of HF generally decreased, although there was considerable variability in the appearnce of HF, presumably reflecting the combined effects of the creation or expansion of lipofuscin deposits and resorption and loss associated with retinal cell death. Our findings suggest that this methodology is sufficiently sensitive to detect change and provides a clinically relevant tool to monitor progression not only with regards to natural history, but also to evaluate the efficacy of potential therapeutic interventions in STGD. Finally, we evaluated the association between AL area and measures of rod- and cone-mediated retinal function, as assessed with electroretinography (ERG). In general, the larger the AL, the poorer the ERG response, with a greater impact of lesion size on cone- rather than rod-mediated retinal function, a finding that was expected on the basis of the location and size of the AL and the distribution of rod- and cone-photoreceptors.
Comments [show]
None has been submitted yet.
No. Sentence Comment
82 ID# Age Years followed Visual Acuity AL Area (mm2 ) HF Area (mm2 ) ffERG Amplitudes (mV) ffERG IT (msec) ABCA4 Variants OD OS OD OS OD OS OD OS OD OS Rod Cone Rod Cone Rod Cone Rod Cone AI AII Group A S0047 53 2.83 20/40 20/40 31.60 33.85 0.20 0.07 304.0 125.4 392.9 143.3 69.5 29.3 72.7 29.3 NF NF S0023 49 3.26 20/160 20/160 9.92 12.67 1.24 1.49 292.1 52.2 272.4 46.4 77.9 36.8 78.3 35.2 L541P/A1038V NF S0050 78 2.71 20/250 20/160 2.02 0.07 1.21 0.67 355.0 82.2 373.1 87.2 76.7 34.1 76.7 34.8 S2255I IVS5,þ1,G > C S0045 44 3.16 20/200 20/160 17.27 44.72 NM NM 177.0 55.7 201.9 50.0 85.3 41.5 87.7 39.9 L541P/A1038V R2107K S0018 35 2.28 20/200 20/250 4.31 2.53 NM NM ND ND ND ND ND ND ND ND G1961E S2255I S0033 63 2.35 20/800 20/400 15.51 12.09 1.30 0.22 168.2 53.0 180.9 45.4 96.3 38.0 101.0 38.4 R943Q IVS8,-9, T > C S0048 62 2.56 20/80 20/20 48.45 40.73 NM NM 119.7 69.5 213.9 54.6 71.2 35.6 80.6 35.2 R290Q K346T S0036 62 2.81 20/640 20/500 55.70 43.38 NM NM 174.8 41.1 158.1 50.8 106.6 38.5 102.3 35.2 R1129L Q234X S0029 62 2.81 20/40 20/80 57.62 61.25 NM NM 219.0 26.0 209.2 35.2 77.9 31.3 73.6 30.9 R2030Q NF S0024 43 3.20 20/25 20/25 4.91 3.91 4.18 1.48 98.2 23.7 148.0 36.2 84.0 33.2 85.5 33.6 NF NF S0078 35 1.17 20/100 20/125 5.64 5.39 0.70 0.83 230.1 106.7 187.6 108.8 71.2 34.1 64.6 34.1 IVS39-10,T > C NF S0032 64 2.56 20/250 20/320 8.67 3.67 0.67 0.74 273.2 75.5 235.1 114.7 87.9 30.5 72.7 30.1 R1108C L2027F S0051 52 1.90 20/25 20/20 32.78 29.23 NM NM ND ND ND ND ND ND ND ND E471K NF S0115 16 0.57 20/50 20/50 0.77 3.43 NM NM ND ND ND ND ND ND ND ND NF NF S0077 49 1.14 20/40 20/25 N/A 8.54 0.16 1.89 279.9 111.9 299.3 105.2 N/A N/A N/A N/A NF NF S0042 43 1.84 20/125 20/200 118.15 126.69 NM NM 122.3 27.7 114.8 29.3 85.7 36.4 89.6 36.0 S2255I E471K S0037 46 2.38 20/125 20/200 8.73 N/A 1.29 0.86 338.7 119.3 373.7 109.4 72.3 28.1 70.7 28.1 G1961E S2255I S0020 42 0.0 20/200 20/160 1.16 1.82 NM NM 140.4 43.2 159.9 45.8 81.3 31.3 71.5 29.3 NF NF S0041 44 0.0 20/200 20/160 4.73 7.09 0.96 1.36 260.5 65* 297.2 95.3 113.7 29.7 91.8 28.9 R1129L NF S0087 44 0.0 20/20 20/20 14.89 23.09 NM NM 180.9 66.8 182.2 78.0 76.1 32.9 72.2 32.9 IVS40, þ5,G > A NF S0053 43 0.0 20/100 20/160 1.33 1.85 NM NM ND ND ND ND ND ND ND ND S2255I NF S0097 73 0.0 20/200 20/200 49.21 54.26 NM NM ND ND ND ND ND ND ND ND D1532E NF S0080 28 0.0 20/125 20/200 NA 0.98 0.56 0.03 333.1 117.2 325.1 121.4 80.2 32.5 82.6 32.9 E1122K S2255I S0210 49 0.0 20/160 20/200 0.21 NA NM NM 304.1 76.1 425.7 81.1 72.8 33.7 79.8 33.7 NF NF Group B S0133 30 0.0 20/125 20/32 0.51 0.01 387.1 123.7 374.8 105.1 65.4 32.9 65.0 32.9 NF NF S0046 49 0.0 20/160 20/160 1.48 1.68 491.2 148.9 494.9 145.3 72.7 30.1 77.3 29.7 P1380L G1961E S0141 40 0.0 20/13 20/32 1.88 0.41 389.0 156.5 343.5 150.6 70.8 33.3 69.7 34.4 NF NF S0058 61 0.0 20/50 20/50 1.48 1.52 ND ND ND ND ND ND ND ND NF NF S0149 16 0.0 20/80 20/100 1.59 0.62 285.0 87.4 333.4 115.3 62.6 32.5 61.4 32.5 NF NF S0083 15 0.0 20/13 20/13 0.17 0.48 441.1 144.2 472.0 155.5 74.4 33.3 71.6 33.3 G863A NF S0216 44 0.0 20/25 20/32 0.52 1.04 228.7 97.7 192.7 75.3 83.8 36.8 85.7 36.0 NF NF S0076 9 0.0 20/200 20/160 3.70 4.23 557.7 139.5 319.8 117.3 81.6 29.7 73.4 28.9 W1408R T1526M S0021 19 0.0 20/160 20/160 1.81 1.08 390.4 202.1 ND ND 63.3 29.3 ND ND L2027F W31R S0085 35 0.0 20/16 20/20 2.70 2.56 ND ND ND ND ND ND ND ND C54T R219T S0044 30 0.0 20/250 20/250 4.23 3.77 ND ND ND ND ND ND ND ND A1794D L2027F S0035 47 0.0 20/160 20/125 0.46 0.13 239.6 112.3 325.0 141.6 64.1 28.1 62.5 28.1 G863A E471K S0065 61 0.0 20/100 20/125 0.83 0.15 243.4 58.6 226.5 49.2 74.8 32.9 84.5 33.3 G1961E NF S0213 27 0.0 20/25 20/25 0.99 1.03 384.2 124.4 424.4 137.9 72.4 31.7 72.4 35.2 NF NF S0088 55 0.0 20/25 20/20 0.11 0.47 ND ND ND ND ND ND ND ND R1898H NF S0127 16 0.0 20/63 20/63 0.08 0.69 536.3 128.9 470.3 136.4 65.4 30.9 77.1 30.9 L541P/A1038V NF S0057 47 0.48 20/125 20/160 1.20 1.75 252.1 80.3 210.5 100.5 75.5 32.9 89.6 32.5 NF NF S0043 53 2.91 20/200 20/200 0.97 0.53 250.5 173.2 354.6 179.2 72.7 28.5 80.1 30.1 G1961E F873I S0101 37 1.1 20/40 20/20 0.14 0.25 382.2 159.7 422.7 156.7 70.5 32.5 74.0 32.9 A1038V IVS42 þ 1,G > A S0027 17 2.18 20/50 20/50 1.60 2.12 196.3 36.3 198.0 51.0 84.7 32.9 98.8 35.3 NF NF S0104 20 1.19 20/160 20/200 0.05 0.12 237.4 77.7 440.1 88.7 63.0 30.9 64.6 30.1 NF NF S0110 26 1.02 20/200 20/125 0.65 0.56 333.8 94.5 349.4 98.7 68.9 32.1 68.9 32.5 R1129L NF S0049 34 2.13 20/50 20/200 0.76 0.92 374.4 97.2 344.0 90.5 81.0 32.9 65.8 33.7 R1129L NF S0075 22 1.06 20/63 20/125 0.40 0.69 454.5 114.0 452.7 122.8 77.5 32.1 75.5 32.9 G1961E NF S0039 36 2.2 20/160 20/100 0.15 0.13 347.7 137.1 395.8 142.0 80.1 31.3 61.7 30.9 M1V R2107H S0054 31 1.93 20/40 20/40 0.41 0.56 ND ND ND ND ND ND ND ND G1961E S2255I S0040 11 2.97 20/160 20/160 0.46 0.07 610.2 72.5 375.6 67.4 106.5 37.2 93.5 32.9 R572X N1805D S0028 54 2.73 20/16 20/16 1.04 1.54 425.5 105.8 386.3 107.8 83.4 34.4 84.1 34.8 L541P/A1038V R2030Q ND ¼ not done.
X
ABCA4 p.Arg219Thr 20398653:82:3362
status: NEW81 ID# Age Years followed Visual Acuity AL Area (mm2 ) HF Area (mm2 ) ffERG Amplitudes (mV) ffERG IT (msec) ABCA4 Variants OD OS OD OS OD OS OD OS OD OS Rod Cone Rod Cone Rod Cone Rod Cone AI AII Group A S0047 53 2.83 20/40 20/40 31.60 33.85 0.20 0.07 304.0 125.4 392.9 143.3 69.5 29.3 72.7 29.3 NF NF S0023 49 3.26 20/160 20/160 9.92 12.67 1.24 1.49 292.1 52.2 272.4 46.4 77.9 36.8 78.3 35.2 L541P/A1038V NF S0050 78 2.71 20/250 20/160 2.02 0.07 1.21 0.67 355.0 82.2 373.1 87.2 76.7 34.1 76.7 34.8 S2255I IVS5,&#fe;1,G > C S0045 44 3.16 20/200 20/160 17.27 44.72 NM NM 177.0 55.7 201.9 50.0 85.3 41.5 87.7 39.9 L541P/A1038V R2107K S0018 35 2.28 20/200 20/250 4.31 2.53 NM NM ND ND ND ND ND ND ND ND G1961E S2255I S0033 63 2.35 20/800 20/400 15.51 12.09 1.30 0.22 168.2 53.0 180.9 45.4 96.3 38.0 101.0 38.4 R943Q IVS8,-9, T > C S0048 62 2.56 20/80 20/20 48.45 40.73 NM NM 119.7 69.5 213.9 54.6 71.2 35.6 80.6 35.2 R290Q K346T S0036 62 2.81 20/640 20/500 55.70 43.38 NM NM 174.8 41.1 158.1 50.8 106.6 38.5 102.3 35.2 R1129L Q234X S0029 62 2.81 20/40 20/80 57.62 61.25 NM NM 219.0 26.0 209.2 35.2 77.9 31.3 73.6 30.9 R2030Q NF S0024 43 3.20 20/25 20/25 4.91 3.91 4.18 1.48 98.2 23.7 148.0 36.2 84.0 33.2 85.5 33.6 NF NF S0078 35 1.17 20/100 20/125 5.64 5.39 0.70 0.83 230.1 106.7 187.6 108.8 71.2 34.1 64.6 34.1 IVS39-10,T > C NF S0032 64 2.56 20/250 20/320 8.67 3.67 0.67 0.74 273.2 75.5 235.1 114.7 87.9 30.5 72.7 30.1 R1108C L2027F S0051 52 1.90 20/25 20/20 32.78 29.23 NM NM ND ND ND ND ND ND ND ND E471K NF S0115 16 0.57 20/50 20/50 0.77 3.43 NM NM ND ND ND ND ND ND ND ND NF NF S0077 49 1.14 20/40 20/25 N/A 8.54 0.16 1.89 279.9 111.9 299.3 105.2 N/A N/A N/A N/A NF NF S0042 43 1.84 20/125 20/200 118.15 126.69 NM NM 122.3 27.7 114.8 29.3 85.7 36.4 89.6 36.0 S2255I E471K S0037 46 2.38 20/125 20/200 8.73 N/A 1.29 0.86 338.7 119.3 373.7 109.4 72.3 28.1 70.7 28.1 G1961E S2255I S0020 42 0.0 20/200 20/160 1.16 1.82 NM NM 140.4 43.2 159.9 45.8 81.3 31.3 71.5 29.3 NF NF S0041 44 0.0 20/200 20/160 4.73 7.09 0.96 1.36 260.5 65* 297.2 95.3 113.7 29.7 91.8 28.9 R1129L NF S0087 44 0.0 20/20 20/20 14.89 23.09 NM NM 180.9 66.8 182.2 78.0 76.1 32.9 72.2 32.9 IVS40, &#fe;5,G > A NF S0053 43 0.0 20/100 20/160 1.33 1.85 NM NM ND ND ND ND ND ND ND ND S2255I NF S0097 73 0.0 20/200 20/200 49.21 54.26 NM NM ND ND ND ND ND ND ND ND D1532E NF S0080 28 0.0 20/125 20/200 NA 0.98 0.56 0.03 333.1 117.2 325.1 121.4 80.2 32.5 82.6 32.9 E1122K S2255I S0210 49 0.0 20/160 20/200 0.21 NA NM NM 304.1 76.1 425.7 81.1 72.8 33.7 79.8 33.7 NF NF Group B S0133 30 0.0 20/125 20/32 0.51 0.01 387.1 123.7 374.8 105.1 65.4 32.9 65.0 32.9 NF NF S0046 49 0.0 20/160 20/160 1.48 1.68 491.2 148.9 494.9 145.3 72.7 30.1 77.3 29.7 P1380L G1961E S0141 40 0.0 20/13 20/32 1.88 0.41 389.0 156.5 343.5 150.6 70.8 33.3 69.7 34.4 NF NF S0058 61 0.0 20/50 20/50 1.48 1.52 ND ND ND ND ND ND ND ND NF NF S0149 16 0.0 20/80 20/100 1.59 0.62 285.0 87.4 333.4 115.3 62.6 32.5 61.4 32.5 NF NF S0083 15 0.0 20/13 20/13 0.17 0.48 441.1 144.2 472.0 155.5 74.4 33.3 71.6 33.3 G863A NF S0216 44 0.0 20/25 20/32 0.52 1.04 228.7 97.7 192.7 75.3 83.8 36.8 85.7 36.0 NF NF S0076 9 0.0 20/200 20/160 3.70 4.23 557.7 139.5 319.8 117.3 81.6 29.7 73.4 28.9 W1408R T1526M S0021 19 0.0 20/160 20/160 1.81 1.08 390.4 202.1 ND ND 63.3 29.3 ND ND L2027F W31R S0085 35 0.0 20/16 20/20 2.70 2.56 ND ND ND ND ND ND ND ND C54T R219T S0044 30 0.0 20/250 20/250 4.23 3.77 ND ND ND ND ND ND ND ND A1794D L2027F S0035 47 0.0 20/160 20/125 0.46 0.13 239.6 112.3 325.0 141.6 64.1 28.1 62.5 28.1 G863A E471K S0065 61 0.0 20/100 20/125 0.83 0.15 243.4 58.6 226.5 49.2 74.8 32.9 84.5 33.3 G1961E NF S0213 27 0.0 20/25 20/25 0.99 1.03 384.2 124.4 424.4 137.9 72.4 31.7 72.4 35.2 NF NF S0088 55 0.0 20/25 20/20 0.11 0.47 ND ND ND ND ND ND ND ND R1898H NF S0127 16 0.0 20/63 20/63 0.08 0.69 536.3 128.9 470.3 136.4 65.4 30.9 77.1 30.9 L541P/A1038V NF S0057 47 0.48 20/125 20/160 1.20 1.75 252.1 80.3 210.5 100.5 75.5 32.9 89.6 32.5 NF NF S0043 53 2.91 20/200 20/200 0.97 0.53 250.5 173.2 354.6 179.2 72.7 28.5 80.1 30.1 G1961E F873I S0101 37 1.1 20/40 20/20 0.14 0.25 382.2 159.7 422.7 156.7 70.5 32.5 74.0 32.9 A1038V IVS42 &#fe; 1,G > A S0027 17 2.18 20/50 20/50 1.60 2.12 196.3 36.3 198.0 51.0 84.7 32.9 98.8 35.3 NF NF S0104 20 1.19 20/160 20/200 0.05 0.12 237.4 77.7 440.1 88.7 63.0 30.9 64.6 30.1 NF NF S0110 26 1.02 20/200 20/125 0.65 0.56 333.8 94.5 349.4 98.7 68.9 32.1 68.9 32.5 R1129L NF S0049 34 2.13 20/50 20/200 0.76 0.92 374.4 97.2 344.0 90.5 81.0 32.9 65.8 33.7 R1129L NF S0075 22 1.06 20/63 20/125 0.40 0.69 454.5 114.0 452.7 122.8 77.5 32.1 75.5 32.9 G1961E NF S0039 36 2.2 20/160 20/100 0.15 0.13 347.7 137.1 395.8 142.0 80.1 31.3 61.7 30.9 M1V R2107H S0054 31 1.93 20/40 20/40 0.41 0.56 ND ND ND ND ND ND ND ND G1961E S2255I S0040 11 2.97 20/160 20/160 0.46 0.07 610.2 72.5 375.6 67.4 106.5 37.2 93.5 32.9 R572X N1805D S0028 54 2.73 20/16 20/16 1.04 1.54 425.5 105.8 386.3 107.8 83.4 34.4 84.1 34.8 L541P/A1038V R2030Q ND &#bc; not done.
X
ABCA4 p.Arg219Thr 20398653:81:3360
status: NEW[hide] Outcome of ABCA4 microarray screening in routine c... Mol Vis. 2009 Dec 20;15:2841-7. Ernest PJ, Boon CJ, Klevering BJ, Hoefsloot LH, Hoyng CB
Outcome of ABCA4 microarray screening in routine clinical practice.
Mol Vis. 2009 Dec 20;15:2841-7., [PMID:20029649]
Abstract [show]
PURPOSE: To retrospectively analyze the clinical characteristics of patients who were screened for mutations with the ATP-binding cassette transporter gene ABCA4 (ABCA4) microarray in a routine clinical DNA diagnostics setting. METHODS: We performed a retrospective analysis of the medical charts of 65 patients who underwent an ABCA4 microarray screening between the years 2002 and 2006. An additional denaturing gradient gel electrophoresis (DGGE) was performed in these patients if less than two mutations were found with the microarray. We included all patients who were suspected of autosomal recessive Stargardt disease (STGD1), autosomal recessive cone-rod dystrophy (arCRD), or autosomal recessive retinitis pigmentosa at the time of microarray request. After a retrospective analysis of the clinical characteristics, the patients who were suspected of STGD1 were categorized as having either a typical or atypical form of STGD1, according to the age at onset, fundus appearance, fluorescein angiography, and electroretinography. The occurrence of typical clinical features for STGD1 was compared between patients with different numbers of discovered mutations. RESULTS: Of the 44 patients who were suspected of STGD1, 26 patients (59%) had sufficient data available for a classification in either typical (six patients; 23%) or atypical (20 patients; 77%) STGD1. In the suspected STGD1 group, 59% of all expected pathogenic alleles were found with the ABCA4 microarray. DGGE led to the finding of 12 more mutations, resulting in an overall detection rate of 73%. Thirty-one percent of patients with two or three discovered ABCA4 mutations met all typical STGD1 criteria. An age at onset younger than 25 years and a dark choroid on fluorescein angiography were the most predictive clinical features to find ABCA4 mutations in patients suspected of STGD1. In 18 patients suspected of arCRD, microarray screening detected 22% of the possible pathogenic alleles. CONCLUSIONS: In addition to confirmation of the diagnosis in typical STGD1, ABCA4 microarray screening is usually requested in daily clinical practice to strengthen the diagnosis when the disease is atypical. This study supports the view that the efficiency and accuracy of ABCA4 microarray screening are directly dependent upon the clinical features of the patients who are screened.
Comments [show]
None has been submitted yet.
No. Sentence Comment
143 DISCOVERED MUTATIONS IN THE ABCA4 GENE IN THE PATIENTS INCLUDED IN THIS STUDY Nucleotide change Effect Alleles References Mutations already included in the ABCA4 microarray c.286A>G p.Asn96Asp 2 [25] c.656G>C p.Arg219Thr 1 [10] c.740A>T p.Asn247Ile 1 This study* c.768G>T splice site 7 [13] c.899C>A p.Thr300Asn 1 [14] c.1805G>A p.Arg602Gln 1 [9] c.1822T>A p.Phe608Ile 2 [13] c.1853G>A p.Gly618Glu 1 [19] c.1938-1G>A splice site 1 [26] c.2588G>C p.DelGly863/Gly863Ala 8 [13] c.2919del exons20-22 deletion/frameshift 2 [13] c.3335C>A p.Thr1112Asn 1 [13] c.3874C>T p.Gln1292X 1 This study* c.3899G>A p.Arg1300Gln 1 [27] c.4297G>A p.Val1433Ile 1 [17] c.4462T>C p.Cys1488Arg 1 [17] c.4506C>A p.Cys1502X 1 This study* c.4539+1G>T splice site 1 [28] c.4774+1G>A splice site 1 [1] c.5161-5162delAC p.Thr1721fs 1 [27] c.5337C>A p.Tyr1779X 1 This study* c.5461-10T>C unknown 9 [9] c.5537T>C p.Ile1846Thr 1 [13] c.5693G>A p.Arg1898His 1 [1] c.5715+5G>A splice site 2 [28] c.5882G>A p.Gly1961Glu 10 [1] c.6088C>T p.Arg2030X 1 [14] c.6089G>A p.Arg2030Gln 1 [9] c.6238-6239delTC p.Ser2080fs 1 [29] c.6529G>A p.Asp2177Asn 1 [1] New mutations found with DGGE analysis c.303+4A>C splice site 1 c.872C>T p.Pro291Leu 1 c.2906A>G p.Lys969Arg 1 c.2947A>G p.Thr983Ala 1 c.3233G>A p.Gly1078Glu 1 c.3305A>T p.Asp1102Val 1 c.4353+1G>A splice site 1 c.5113C>T p.Arg1705Trp 1 c.5762_5763dup p.Ala1922fs 1 c.6411T>A p.Cys2137X 1 Total 74 Mutations are designated by their nucleotide change, followed by their effect on the protein and the number of alleles that were found with the mutation.
X
ABCA4 p.Arg219Thr 20029649:143:211
status: NEW[hide] Lipofuscin- and melanin-related fundus autofluores... Am J Ophthalmol. 2009 May;147(5):895-902, 902.e1. Epub 2009 Feb 25. Kellner S, Kellner U, Weber BH, Fiebig B, Weinitz S, Ruether K
Lipofuscin- and melanin-related fundus autofluorescence in patients with ABCA4-associated retinal dystrophies.
Am J Ophthalmol. 2009 May;147(5):895-902, 902.e1. Epub 2009 Feb 25., [PMID:19243736]
Abstract [show]
PURPOSE: To compare melanin-related near-infrared fundus autofluorescence (NIA; excitation 787 nm, emission > 800 nm) to lipofuscin-related fundus autofluorescence (FAF; excitation 488 nm, emission > 500 nm) in patients with retinal dystrophies associated with ABCA4 gene mutations (ABCA4-RD). DESIGN: Observational case series. METHODS: Sixteen consecutive patients with ABCA4-RD diagnosed in one institution were included. FAF and NIA imaging were performed with a confocal scanning laser ophthalmoscope (Heidelberg Retina Angiograph 2; Heidelberg Engineering, Heidelberg, Germany). The pattern and size of retinal pigment epithelial (RPE) alterations detected with FAF and NIA were evaluated. RESULTS: FAF and NIA alterations were detected in all patients. In 7 of 16 patients, the alterations progressed beyond the vascular arcades, and in 9 of 16, they were confined to the macula. Spots of increased NIA (4/16) were less frequent compared with spots of increased FAF (15/16). Confluent patches of reduced NIA were frequent (12/16), and severely reduced NIA was observed in 3 cases. Areas with reduced NIA corresponded to either increased or reduced FAF. Preservation of subfoveal FAF or NIA corresponded to visual acuity > or = 0.4. Abnormalities detected with NIA were more extensive or more severe compared to FAF in 15 of 16 patients. CONCLUSION: Patterns of FAF and NIA indicate different involvement of lipofuscin and melanin and their derivates in the pathophysiologic process of ABCA4-RD. NIA imaging provides a noninvasive in vivo visualization of RPE abnormalities that may precede FAF alterations during the degenerative process. Combined FAF and NIA imaging will provide further insight in the development of ABCA4-RD and could help to monitor future therapeutic interventions.
Comments [show]
None has been submitted yet.
No. Sentence Comment
32 Age Gender ABCA4 Mutation VA RE/LE Full-field ERG Multifocal ERG Group 1a CRD 2808 34 F c.5413AϾG (p.Asn1805Asp) c.4880_4903dup24 (p.Leu1627_Ala1634dup) 0.05 0.05 DA and LA markedly reduced No recordable potentials CRD 2830 53 F c.2690CϾT (p.Thr897Ile), c.6176GϾC (p.Gly2059Ala) 0.5 0.7 DA and LA moderately reduced Pericentral amplitude reduction CRD 2797 54 M c.4297GϾA (p.Val1433Ile) 2. mutation not foundc 0.1 0.16 DA and LA moderately reduced Not done SD 2872 44 F c.4462TϾC (p.Cys1488Arg) 2. mutation not done 0.6 0.7 DA and LA borderline Central amplitude reduction CRD 2861 72 F c.122GϾA (p.Trp41Ter) 2. mutation not done 0.4 0.5 DA: mildly and LA: moderately reduced Central amplitude reduction CRD 2644 67 F c.634CϾT (p.Arg212Cys), c.656GϾC (p.Arg219Thr), c.2588GϾC (p.Gly863Ala/ delGly863) 0.6 0.04 DA and LA moderately reduced Central amplitude reduction CRD 2936 44 F c.1622TϾC (p.Leu541Pro)/ c.3113CϾT (p.Ala1038Val), 2. mutation not done 1.0 1.0 DA: mildly and LA: moderately reduced Pericentral amplitude reduction Group 2b SD 2837 42 M c.1622TϾC (p.Leu541Pro)/ c.3113CϾT (p.Ala1038Val), c.5882GϾA (p.Gly1961Glu) 0.16 0.16 Normal Central amplitude reduction SD 2780 37 M c.768GϾT (splice mutation) c.5882GϾA (p.Gly1961Glu) 0.1 0.1 Normal Central amplitude reduction SD 2942 47 F c.1622TϾC (p.Leu541Pro) c.6320 GϾA (p.Arg2107His) 0.1 0.16 Not done Central amplitude reduction SD 2930 40 F c.6089GϾA (p.Arg2030Gln) c.6543del36bp, (p.Leu2182_Phe2193del) 0.1 0.1 DA and LA mildly reduced Central amplitude reduction SD 2933 43 F c.1609CϾT (p.Arg537Cys) c.5882GϾA (p.Gly1961Glu) c.1654GϾA (p.Val552Ile) 0.05 0.1 Normal Not done SD 2669 13 F c.768GϾT (splice mutation) c.6449GϾA (p.Cys2150Tyr) 0.1 0.16 DA and LA borderline Central amplitude reduction SD 2700 22 F c.1609CϾT (p.Arg537Cys) c.2588GϾC (p.Gly863Ala) 0.1 0.1 Normal Central amplitude reduction SD 2833 29 M c.1928TϾG (p.Val643Gly) 2. mutation not foundc 0.1 0.1 Normal Not done SD 2799 13 M c.3113CϾT (p.Ala1038Val) c.5461-10TϾC 0.4 0.4 Not done Central amplitude reduction CRD ϭ cone-rod dystrophy; DA ϭ dark adaptation; ERG ϭ electroretinography; F ϭ female; LA ϭ light adaptation; LE ϭ left eye; M ϭ male; RE ϭ right eye; SD ϭ Stargardt disease; VA ϭ visual acuity.
X
ABCA4 p.Arg219Thr 19243736:32:802
status: NEWX
ABCA4 p.Arg219Thr 19243736:32:916
status: NEW[hide] Genotyping microarray (gene chip) for the ABCR (AB... Hum Mutat. 2003 Nov;22(5):395-403. Jaakson K, Zernant J, Kulm M, Hutchinson A, Tonisson N, Glavac D, Ravnik-Glavac M, Hawlina M, Meltzer MR, Caruso RC, Testa F, Maugeri A, Hoyng CB, Gouras P, Simonelli F, Lewis RA, Lupski JR, Cremers FP, Allikmets R
Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.
Hum Mutat. 2003 Nov;22(5):395-403., [PMID:14517951]
Abstract [show]
Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research.
Comments [show]
None has been submitted yet.
No. Sentence Comment
115 Mutations Detected in theTwoTest Populations by the ABCR400 Array,That Had Not Been Found by SSCP Number Nucleotide change Protein e¡ect Number of cases 1 161G4A C54Y 3 2 194G4A G65E 1 3 428C4T P143L 1 4 455G4A R152Q 1 5 514G4A G172S 1 6 635G4A R212H 1 7 656G4C R219T 1 8 768G4Ta Splice/V256V 3 9 1007C4G S336C 2 10 1268A4G H423R 4 11 1411G4A E471K 2 12 1622T4Ca L541P 8 13 1933G4A D645N 1 14 2041C4T R681X 5 15 2090G4A W697X 1 16 2471T4C I824T 1 17 2588G4Ca Splice/G863A 5 18 2828G4A R943Q 1 19 2966T4C V989A 1 20 2971G4C G991R 1 21 4139C4T P1380L 8 22 4195G4A E1399K 1 23 4328G4A R1443H 1 24 4457C4T P1486L 1 25 4462T4Ca C1488R 1 26 4469G4Aa C1490Y 1 27 4918C4Ta R1640W 2 28 IVS40+5G4A Splice 2 29 5537T4C I1846T 2 30 5882G4A G1961E 5 31 6089G4A R2030Q 1 32 6104T4C L2035P 1 33 6449G4A C2150Y 1 Mutation numbering is based on the cDNA sequence (GenBank NM_000350).
X
ABCA4 p.Arg219Thr 14517951:115:267
status: NEW[hide] Clinical and molecular analysis of Stargardt disea... Am J Ophthalmol. 2013 Sep;156(3):487-501.e1. doi: 10.1016/j.ajo.2013.05.003. Fujinami K, Sergouniotis PI, Davidson AE, Wright G, Chana RK, Tsunoda K, Tsubota K, Egan CA, Robson AG, Moore AT, Holder GE, Michaelides M, Webster AR
Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function.
Am J Ophthalmol. 2013 Sep;156(3):487-501.e1. doi: 10.1016/j.ajo.2013.05.003., [PMID:23953153]
Abstract [show]
PURPOSE: To describe a cohort of patients with Stargardt disease who show a foveal-sparing phenotype. DESIGN: Retrospective case series. METHODS: The foveal-sparing phenotype was defined as foveal preservation on autofluorescence imaging, despite a retinopathy otherwise consistent with Stargardt disease. Forty such individuals were ascertained and a full ophthalmic examination was undertaken. Following mutation screening of ABCA4, the molecular findings were compared with those of patients with Stargardt disease but no foveal sparing. RESULTS: The median age of onset and age at examination of 40 patients with the foveal-sparing phenotype were 43.5 and 46.5 years. The median logMAR visual acuity was 0.18. Twenty-two patients (22/40, 55%) had patchy parafoveal atrophy and flecks; 8 (20%) had numerous flecks at the posterior pole without atrophy; 7 (17.5%) had mottled retinal pigment epithelial changes; 2 (5%) had multiple atrophic lesions, extending beyond the arcades; and 1 (2.5%) had a bull's-eye appearance. The median central foveal thickness assessed with spectral-domain optical coherence tomographic images was 183.0 mum (n = 33), with outer retinal tubulation observed in 15 (45%). Twenty-two of 33 subjects (67%) had electrophysiological evidence of macular dysfunction without generalized retinal dysfunction. Disease-causing variants were found in 31 patients (31/40, 78%). There was a higher prevalence of the variant p.Arg2030Gln in the cohort with foveal sparing compared to the group with foveal atrophy (6.45% vs 1.07%). CONCLUSIONS: The distinct clinical and molecular characteristics of patients with the foveal-sparing phenotype are described. The presence of 2 distinct phenotypes of Stargardt disease (foveal sparing and foveal atrophy) suggests that there may be more than 1 disease mechanism in ABCA4 retinopathy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
141 Allele Frequencies of 72 ABCA4 Variants Identified in a Comparison Groupa With the Typical Stargardt Disease (140 Patients Without Evidence of Foveal Sparing on Autofluorescence Imaging) Exon Nucleotide Substitution and Amino Acid Change Number of Alleles Allele Frequency 2 c.71G>A, p.Arg24His 1 0.36% 2 c.161G>A, p.Cys54Tyr 3 1.07% 3 c.223T>G, p.Cys75Gly 1 0.36% 5 c.455G>A, p.Arg152Gln 1 0.36% 5 c.454C>T, p.Arg152* 1 0.36% 5 c.466 A>G, p.Ile156Val 2 0.71% 6 c.634C>T, p. Arg212Cys 3 1.07% 6 c.656G>C, p.Arg219Thr 1 0.36% 6 c.666_678delAAAGACGGTGCGC, p.Lys223_Arg226delfs 2 0.71% 6 c.768G>T, Splicing site 4 1.42% 8 c.1037A>C, p.Lys346Thr 1 0.36% 10 c.1222C>T, p.Arg408* 3 1.07% 12 c.1622T>C, p.Leu541Pro 2 0.71% 12 c.1648 G>T, p.Gly550* 1 0.36% 13 c.1804C>T, p.Arg602Trp 1 0.36% 13 c.1817G>A, p.Gly606Asp 1 0.36% 13 c.1922G>C, p.Cys641Ser 1 0.36% Int 13 c.1937&#fe;1G>A, Splicing site 2 0.71% 14 c.1957C>T, p.Arg653Cys 2 0.71% 17 c.2588G>C, p.Gly863Ala 19 6.79% 18 c.2701A>G, p.Thr901Ala 1 0.36% 19 c.2791G>A, p.Val931Met 2 0.71% 19 c.2894A>G, p.Asn965Ser 1 0.36% 20 c.2966T>C, p.Vla989Ala 3 1.07% 20 c.2971G>C, p.Gly991Arg 2 0.71% 21 c.3056C>T, p.Thr1019Met 1 0.36% 21 c.3113C>T, p.Ala1038Val 3 1.07% 21 c.3064G>A, p.Glu1022Lys 2 0.71% 22 c.3211_3212insGT, p.Ser1071Cysfs 6 2.14% 22 c.3259G>A, p.Glu1087Lys 4 1.43% 22 c.3292C>T, p.Arg1098Cys 1 0.36% 22 c.3322C>T, p.Arg1108Cys 5 1.79% 22 c.3323G>A, p.Arg1108His 1 0.36% 23 c.3364G>A, p.Glu1122Lys 1 0.36% 23 c.3386G>A, p.Arg1129His 1 0.36% 24 c.3602T>G, p.Leu1201Arg 3 1.07% 27 c.3898C>T, p.Arg1300* 2 0.71% 28 c.4139C>T, p.Pro1380Leu 14 5.00% 28 c.4222T>C, p.Trp1408Arg 1 0.36% 28 c.4234C>T, p.Gly1412* 1 0.36% 28 c.4253&#fe;5G>T, Splice site 1 0.36% 28 c.4253&#fe;4C>T, Splice site 1 0.36% 29 c.4283C>T, p.Thr1428Met 1 0.36% 29 c.4319T>C, p.Phe1440Ser 1 0.36% 29 c.4462T>C, p.Cys1488Arg 1 0.36% 30 c.4469G>A, p.Cys1490Tyr 5 1.79% 30 c.4537_4538insC, p.Gly1513Profs 1 0.36% 31 c.4577C>T, p.Thr1526Met 2 0.71% 33 c.4715C>T, p.Thr1572Met 1 0.36% Continued on next page TABLE 3.
X
ABCA4 p.Arg219Thr 23953153:141:507
status: NEW[hide] Early-onset stargardt disease: phenotypic and geno... Ophthalmology. 2015 Feb;122(2):335-44. doi: 10.1016/j.ophtha.2014.08.032. Epub 2014 Oct 17. Lambertus S, van Huet RA, Bax NM, Hoefsloot LH, Cremers FP, Boon CJ, Klevering BJ, Hoyng CB
Early-onset stargardt disease: phenotypic and genotypic characteristics.
Ophthalmology. 2015 Feb;122(2):335-44. doi: 10.1016/j.ophtha.2014.08.032. Epub 2014 Oct 17., [PMID:25444351]
Abstract [show]
OBJECTIVE: To describe the phenotype and genotype of patients with early-onset Stargardt disease. DESIGN: Retrospective cohort study. PARTICIPANTS: Fifty-one Stargardt patients with age at onset </=10 years. METHODS: We reviewed patient medical records for age at onset, medical history, initial symptoms, best-corrected visual acuity (BCVA), ophthalmoscopy, fundus photography, fundus autofluorescence (FAF), fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and full-field electroretinography (ffERG). The ABCA4 gene was screened for mutations. MAIN OUTCOME MEASURES: Age at onset, BCVA, fundus appearance, FAF, FA, SD-OCT, ffERG, and presence of ABCA4 mutations. RESULTS: The mean age at onset was 7.2 years (range, 1-10). The median times to develop BCVA of 20/32, 20/80, 20/200, and 20/500 were 3, 5, 12, and 23 years, respectively. Initial ophthalmoscopy in 41 patients revealed either no abnormalities or foveal retinal pigment epithelium (RPE) changes in 10 and 9 patients, respectively; the other 22 patients had foveal atrophy, atrophic RPE lesions, and/or irregular yellow-white fundus flecks. On FA, there was a "dark choroid" in 21 out of 29 patients. In 14 out of 50 patients, foveal atrophy occurred before flecks developed. On FAF, there was centrifugal expansion of disseminated atrophic spots, which progressed to the eventual profound chorioretinal atrophy. Spectral-domain OCT revealed early photoreceptor damage followed by atrophy of the outer retina, RPE, and choroid. On ffERG in 26 patients, 15 had normal amplitudes, and 11 had reduced photopic and/or scotopic amplitudes at their first visit. We found no correlation between ffERG abnormalities and the rate of vision loss. Thirteen out of 25 patients had progressive ffERG abnormalities. Finally, genetic screening of 44 patients revealed >/=2 ABCA4 mutations in 37 patients and single heterozygous mutations in 7. CONCLUSIONS: In early-onset Stargardt, initial ophthalmoscopy can reveal no abnormalities or minor retinal abnormalities. Yellow-white flecks can be preceded by foveal atrophy and may be visible only on FAF. Although ffERG is insufficient for predicting the rate of vision loss, abnormalities can develop. Over time, visual acuity declines rapidly in parallel with progressive retinal degeneration, resulting in profound chorioretinal atrophy. Thus, early-onset Stargardt lies at the severe end of the spectrum of ABCA4-associated retinal phenotypes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
136 ABCA4 Mutations in Early-Onset Stargardt Patients Mutation Effect Allele References Frequency Percentage c.122G>A p.Trp41* 1 1 35 c.214G>A p.Gly72Arg 1 1 32 c.286A>G p.Asn96Asp 4 5 36 c.443-?_570&#fe;?del p.Arg149fs 1 1 This study c.455G>A p.Arg152Gln 1 1 32, 37 c.656G>C p.Arg219Thr 1 1 38 c.768G>T p.Val256Val/p.?
X
ABCA4 p.Arg219Thr 25444351:136:274
status: NEW