ABCA4 p.Leu1580Ser
Predicted by SNAP2: | A: D (59%), C: N (61%), D: D (75%), E: D (53%), F: N (61%), G: D (71%), H: N (53%), I: N (82%), K: D (63%), M: N (87%), N: D (63%), P: D (66%), Q: N (57%), R: D (66%), S: D (59%), T: N (61%), V: N (78%), W: D (66%), Y: N (57%), |
Predicted by PROVEAN: | A: N, C: N, D: D, E: D, F: N, G: D, H: D, I: N, K: D, M: N, N: D, P: D, Q: D, R: D, S: N, T: N, V: N, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Phenotypic and genetic spectrum of Danish patients... Ophthalmic Genet. 2012 Dec;33(4):225-31. doi: 10.3109/13816810.2011.643441. Epub 2012 Jan 9. Duno M, Schwartz M, Larsen PL, Rosenberg T
Phenotypic and genetic spectrum of Danish patients with ABCA4-related retinopathy.
Ophthalmic Genet. 2012 Dec;33(4):225-31. doi: 10.3109/13816810.2011.643441. Epub 2012 Jan 9., [PMID:22229821]
Abstract [show]
Background: Pathogenic variations in the ABCA4 gene were originally recognized as genetic background for the autosomal recessive disorders Stargardt disease and fundus flavimaculatus, but have expanded to embrace a diversity of retinal diseases, giving rise to the new diagnostic term, ABCA4-related retinopathy. Diagnostic genotyping of ABCA4 is complicated by the large size of the gene and the existence of approximately 600 known pathogenic variations, along with numerous rare polymorphisms. A commercial diagnostic array-based assay has been developed targeting known mutations, however a conclusive genetic diagnosis must rely on a comprehensive genetic screening as the mutation spectrum of ABCA4-related retinopathies continues to expand. Material and methods: Among 161 patients with a Stargardt-related phenotype previously assessed with the commercial ABCA4 mutation microarray, we analyzed the ABCA4 gene with High-resolution melting (HRM) in patients in whom the array analysis identified either a heterozygous mutation (n = 50) or no mutation (n = 30). Results: The HRM method detected each of the already known mutations and polymorphisms. We identified the second ABCA4 mutation in 31 of 50 heterozygous patients (62%). Several novel mutations were identified of which four were identified multiple times. The recurrent novel mutations were subsequently assessed among the 30 patients with possible ABCA4-related diseases, previously found to be negative for known ABCA4 mutations by array analysis. In total, 30 different mutations were identified of which 21 have not been described before. Conclusion: Scandinavian patients with ABCA4-related retinopathy appear to have a distinct mutation spectrum, which can be identified in patients of diverse clinical phenotypes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 [1622C>T+3113C>T] p.[L541P+A1038V] 12 c.4739T>C p.L1580S 33 Known D444 c.2701A>G p.T901A 18 c.4773 + 3A>G na IVS33 New D034 c.2588G>C p.G863A 17 c.4773 + 5G>A na IVS33 New D178 c.3113C>T p.A1038V 21 c.5523_5528del p.1843_1844delRG 39 New D110 c.
X
ABCA4 p.Leu1580Ser 22229821:57:50
status: NEW97 Phenotype Patient Mutation 1 Mutation 2 Mutation 3 Stargardt-flavimaculatus D043 p.G863A p.P62S D050 p.G863A p.L510R D112 p.N965S p.L510R D069 p.A1038V p.L510R D099 p.R2030Q p.L510R D178 p.A1038V c.1843_1844delRG D166 p.G863A p.V767D D191 p.G863A p.A1357T D167 c.5461-10T>C p.R1368C D128 p.2408delG* p.T1415P D027 p.G863A c.4668-2A>G* D136 p.[L541P+A1038V] p.L1580S D048 c.3766dupTG* p.R1898H p.F655C D034 p.G863A c.4773 + 5G>A* D015 p. G1127K p.K2160E p.V552I D189 p.N965S p.K2160E D433 p.G1961E c.6005 + 1G>A* Generalized retinal dystrophy D117 c.3191-2A>G* c.2408delG* D135 p.N965S c.2408delG* D147 p.N965S c.2408delG* D173 p.C1490Y p.T972N D018 p.C2150Y p.L1246V D022 p.C1488R p.R1368C D108 p.G550R p.R1368C D414 p.G863A p.W1551X* D444 p.T901A c.4773 + 3A>G* D110 p.[L541P+A1038V] c.5584 + 1G>A* D182 p.R2030Q c.6386 + 1G>A* D186 p.R1108C c.6386 + 1G>AA* D133 p.L510R IVS46 + 1G>A* Cone-rod dystrophy D134 c.4667 + 2G>T* p.L2033R Atypical maculopathy D165 p.F608L p.C748Y D181 p.R2030Q p.G1127E D188 c.5461-10T>C p.R1898H *Predicted to compromise correct reading frame.
X
ABCA4 p.Leu1580Ser 22229821:97:359
status: NEW59 [1622C>T+3113C>T] p.[L541P+A1038V] 12 c.4739T>C p.L1580S 33 Known D444 c.2701A>G p.T901A 18 c.4773ߙ+ߙ3A>G na IVS33 New D034 c.2588G>C p.G863A 17 c.4773ߙ+ߙ5G>A na IVS33 New D178 c.3113C>T p.A1038V 21 c.5523_5528del p.1843_1844delRG 39 New D110 c.
X
ABCA4 p.Leu1580Ser 22229821:59:50
status: NEW100 Phenotype Patient Mutation 1 Mutation 2 Mutation 3 Stargardt-flavimaculatus D043 p.G863A p.P62S D050 p.G863A p.L510R D112 p.N965S p.L510R D069 p.A1038V p.L510R D099 p.R2030Q p.L510R D178 p.A1038V c.1843_1844delRG D166 p.G863A p.V767D D191 p.G863A p.A1357T D167 c.5461-10T>C p.R1368C D128 p.2408delG* p.T1415P D027 p.G863A c.4668-2A>G* D136 p.[L541P+A1038V] p.L1580S D048 c.3766dupTG* p.R1898H p.F655C D034 p.G863A c.4773ߙ+ߙ5G>A* D015 p. G1127K p.K2160E p.V552I D189 p.N965S p.K2160E D433 p.G1961E c.6005ߙ+ߙ1G>A* Generalized retinal dystrophy D117 c.3191-2A>G* c.2408delG* D135 p.N965S c.2408delG* D147 p.N965S c.2408delG* D173 p.C1490Y p.T972N D018 p.C2150Y p.L1246V D022 p.C1488R p.R1368C D108 p.G550R p.R1368C D414 p.G863A p.W1551X* D444 p.T901A c.4773ߙ+ߙ3A>G* D110 p.[L541P+A1038V] c.5584ߙ+ߙ1G>A* D182 p.R2030Q c.6386ߙ+ߙ1G>A* D186 p.R1108C c.6386ߙ+ߙ1G>AA* D133 p.L510R IVS46ߙ+ߙ1G>A* Cone-rod dystrophy D134 c.4667ߙ+ߙ2G>T* p.L2033R Atypical maculopathy D165 p.F608L p.C748Y D181 p.R2030Q p.G1127E D188 c.5461-10T>C p.R1898H *Predicted to compromise correct reading frame.
X
ABCA4 p.Leu1580Ser 22229821:100:359
status: NEW[hide] Novel mutations in of the ABCR gene in Italian pat... Eye (Lond). 2010 Jan;24(1):158-64. Epub 2009 Mar 6. Passerini I, Sodi A, Giambene B, Mariottini A, Menchini U, Torricelli F
Novel mutations in of the ABCR gene in Italian patients with Stargardt disease.
Eye (Lond). 2010 Jan;24(1):158-64. Epub 2009 Mar 6., [PMID:19265867]
Abstract [show]
PURPOSE: Stargardt disease (STGD) is the most prevalent juvenile macular dystrophy, and it has been associated with mutations in the ABCR gene, encoding a photoreceptor-specific transport protein. In this study, we determined the mutation spectrum in the ABCR gene in a group of Italian STGD patients. METHODS: The DNA samples of 71 Italian patients (from 62 independent pedigrees), affected with autosomal recessive STGD, were analysed for mutations in all 50 exons of the ABCR gene by the DHPLC approach (with optimization of the DHPLC conditions for mutation analysis) and direct sequencing techniques. RESULTS: In our group of STGD patients, 71 mutations were identified in 68 patients with a detection rate of 95.7%. Forty-three mutations had been already reported in the literature, whereas 28 mutations had not been previously described and were not detected in 150 unaffected control individuals of Italian origin. Missense mutations represented the most frequent finding (59.2%); G1961E was the most common mutation and it was associated with phenotypes in various degrees of severity. CONCLUSIONS: Some novel mutations in the ABCR gene were reported in a group of Italian STGD patients confirming the extensive allelic heterogeneity of this gene-probably related to the vast number of exons that favours rearrangements in the DNA sequence.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 Table 2 Summary of the mutations identified in the ABCR gene in our series of STGD Italian patients Patient Allele 1 mutation Allele 2 mutation S 1 R212C T1019M S 8 V1433I V1433I S 21 A1598D A1598D S 33 N96K G978D S 56 A1598D G1961E S 70 R212C T1019M S 71 W700X WT S 74 6750delA V767D S 77 G1961E WT S 82 Q21X G1961E S 106 C1177X G1961E S 107 C1177X G1961E S 114 T970P-F1015E - S 115 T970P-F1015E - S 120 N415K G1961E S 162 324-327insT 324-327insT S 181 W1408X G1961E S 190 C1177X A1598D S 201 G1961E WT S 202 Q21X T970P-F1015E S 213 M840R G1961E S 231 WT WT S 236 C1177X G1961E S 237 WT WT S 241 V256 splice WT S 246 IVS6-1g4t R1108C S 260 L2221P 5109delG-I156V S 321 IVS9 þ 1G4C S1099X S 328 IVS42 þ 4delG IVS35 þ 2t4c S 346 E2096K WT S 347 IVS28 þ 5g4a WT S 353 P1484S-G1961E P68L S 354 P1484S-G1961E P68L S 355 P1484S-G1961E P68L S 360 G1961E 5961delGGAC S 364 IVS35 þ 2t4c G1961E S 365 L541P/A1038V G1961E S 377 IVS42 þ 4delG IVS35 þ 2t4c S 380 R653C WT S 413 R212C T1019M S 414 A1598D G1961E S 417 G1078E G1961E S 438 R1055W WT S 440 4021ins24bp T1526M-G1961E S 449 W1479X L2140Q S 450 W1479X L2140Q S 474 W1461X G 1977S S 486 WT WT S 492 R1098C/L1970F 6548insTGAA S 528 T977P IVS40 þ 5g4a S 531 G690V Q1332X S 532 R572X L1473M-4733delGTTT S 535 IVS40 þ 5g4a 5917delG S 550 IVS40 þ 5g4a 6750delA S 555 250insCAAA WT S 556 250insCAAA WT S 575 N96H G1961E S 590 W821R IVS40 þ 5g4a S 592 V931M R1108C S 593 V767D R2030X Table 2 (Continued ) Patient Allele 1 mutation Allele 2 mutation S 594 G172S G1961E S 602 P1380L G1961E S 607 E616K L1580S-K2172R S 640 250insCAAA S1696N S 694 IVS35 þ 2t4c G1961E S 725 IVS13 þ 1g4a Q1376 splice S 731 L541P-A1038V G1961E S 755 N965S IVS40 þ 5g4a S 789 E1087K G1977S S 968 T1019M G1961E S 992 R212C G1961E Bold values indicate novel mutations.
X
ABCA4 p.Leu1580Ser 19265867:57:1583
status: NEWX
ABCA4 p.Leu1580Ser 19265867:57:1594
status: NEW[hide] Characterization of stargardt disease using polari... Invest Ophthalmol Vis Sci. 2013 Sep 27;54(9):6416-25. doi: 10.1167/iovs.12-11550. Ritter M, Zotter S, Schmidt WM, Bittner RE, Deak GG, Pircher M, Sacu S, Hitzenberger CK, Schmidt-Erfurth UM
Characterization of stargardt disease using polarization-sensitive optical coherence tomography and fundus autofluorescence imaging.
Invest Ophthalmol Vis Sci. 2013 Sep 27;54(9):6416-25. doi: 10.1167/iovs.12-11550., [PMID:23882696]
Abstract [show]
PURPOSE: To identify disease-specific changes in Stargardt disease (STGD) based on imaging with polarization-sensitive spectral-domain optical coherence tomography (PS-OCT) and to compare structural changes with those visible on blue light fundus autofluorescence (FAF) imaging. METHODS: Twenty-eight eyes of 14 patients diagnosed with STGD were imaged using a novel high-speed, large-field PS-OCT system and FAF (excitation 488 nm, emission > 500 nm). The ophthalmoscopic phenotype was classified into three groups. ABCA4 mutation testing detected 15 STGD alleles, six of which harbor novel mutations. RESULTS: STGD phenotype 1 (12 eyes) showed sharply delineated areas of absent RPE signal on RPE segmentation B-scans of PS-OCT correlating with areas of hypofluorescence on FAF. Adjacent areas of irregular fluorescence correlated with an irregular RPE segmentation line with absence of overlaying photoreceptor layers. Eyes characterized on OCT by a gap in the subfoveal outer segment layer (foveal cavitation) showed a normal RPE segmentation line on PS-OCT. Hyperfluorescent flecks on FAF in phenotype 2 STGD (8 eyes) were identified as clusters of depolarizing material at the level of the RPE. Distribution of flecks could be depicted on RPE elevation maps. An increased amount of depolarizing material in the choroid was characteristic for STGD Phenotype 3 (8 eyes). CONCLUSIONS: PS-OCT together with FAF identified characteristic patterns of changes in different stages of the disease. PS-OCT is a promising new tool for diagnosis and evaluation of future treatment modalities in STGD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
102 Patient Characteristics Patient Number Sex Age Age of Onset Visual Acuity RE/LE Fundus Phenotype ERG Type ABCA4 Mutation Allele 1 ABCA4 Mutation Allele 2 Exon Position cDNA Effect on Protein Exon Position cDNA Effect on Protein 1 M 52 19 1.00/1.30 1 2 33 c.4738_4739delTT p.Leu1580Lysfs*16 46 c.6320G>A p.Arg2107His 2 F 32 9 1.30/1.00 1 1 19 c.2829delG p.Pro944Glnfs*6 42 c.5882G>A p.Gly1961Glu 3 M 29 16 1.30/1.00 1 1 IVS1 c.66&#fe;3A>C / 19 c.2791G>A p.Val931Met 4 F 32 20 1.00/1.00 1 1 17 c.2588G>C* p.Gly863Ala* 22 c.3266C>T p.Thr1089Ile 5 M 28 21 0.52/0.70 1 1 42 c.5882G>A p.Gly1961Glu 42 c.5882G>A p.Gly1961Glu 6 F 25 20 1.00/0.80 1 1 13 c.1865delG p.Ser622Thrfs*27 42 c.5882G>A p.Gly1961Glu 7 F 32 27 0.05/0.10 2 1 25 c.3626T>C p.Met1209Thr 33 c.4739T>C p.Leu1580Ser 8 F 42 17 1.00/1.00 2 1 12 c.1622T>C* p.Leu541Proߤ 42 c.5882G>A p.Gly1961Glu 9 F 23 23 0.00/0.00 2 1 IVS40 c.5714&#fe;5G>A / IVS40 c.5714&#fe;5G>A / 10 F 30 16 1.00/1.00 2 1 12 c.1622T>Cߤ p.Leu541Proߤ 19 c.2864A>G p.Glu955Gly 11 M 45 19 1.30/1.30 3 2 12 c.1622T>Cߤ p.Leu541Proߤ 17 c.2588G>C* p.Gly863Ala* 12 M 37 14 1.00/1.00 3 2 12 c.1622T>Cߤ p.Leu541Proߤ 19 c.2864A>G p.Glu955Gly 13 F 27 20 1.00/1.00 3 2 12 c.1622T>Cߤ p.Leu541Proߤ IVS40 c.5714&#fe;5G>A / 14 M 41 14 2.00/2.00 3 3 IVS13 c.1937&#fe;1G>A / 17 c.2588G>C* p.Gly863Ala* Patient number, sex, age, age of disease onset, visual acuity (logMAR), fundus phenotype (1, STGD phenotype 1; 2, STGD phenotype 2; 3, STGD phenotype 3), ERG type, ABCA4 mutation allele 1 and ABCA4 mutation allele 2; exons and coding DNA (cDNA) positions based on reference sequence NM_000350 (IVS: intervening sequence, intron) are shown.
X
ABCA4 p.Leu1580Ser 23882696:102:764
status: NEW