ABCA4 p.Trp821Arg
ClinVar: |
c.2461T>A
,
p.Trp821Arg
?
, not provided
|
Predicted by SNAP2: | A: D (85%), C: D (75%), D: D (85%), E: D (80%), F: D (63%), G: D (91%), H: D (71%), I: D (71%), K: D (80%), L: D (75%), M: D (75%), N: D (85%), P: D (91%), Q: D (80%), R: D (95%), S: D (85%), T: D (80%), V: D (75%), Y: D (59%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Macular function in macular degenerations: repeata... Invest Ophthalmol Vis Sci. 2012 Feb 21;53(2):841-52. Print 2012 Feb. Cideciyan AV, Swider M, Aleman TS, Feuer WJ, Schwartz SB, Russell RC, Steinberg JD, Stone EM, Jacobson SG
Macular function in macular degenerations: repeatability of microperimetry as a potential outcome measure for ABCA4-associated retinopathy trials.
Invest Ophthalmol Vis Sci. 2012 Feb 21;53(2):841-52. Print 2012 Feb., [PMID:22247458]
Abstract [show]
PURPOSE: To measure macular visual function in patients with unstable fixation, to define the photoreceptor source of this function, and to estimate its test-retest repeatability as a prerequisite to clinical trials. METHODS: Patients (n = 38) with ABCA4-associated retinal degeneration (RD) or with retinitis pigmentosa (RP) were studied with retina-tracking microperimetry along the foveo-papillary profile between the fovea and the optic nerve head, and point-by-point test-retest repeatability was estimated. A subset with foveal fixation was also studied with dark-adapted projection perimetry using monochromatic blue and red stimuli along the horizontal meridian. RESULTS: Macular function in ABCA4-RD patients transitioned from lower sensitivity at the parafovea to higher sensitivity in the perifovea. RP patients had the inverse pattern. Red-on-red microperimetric sensitivities successfully avoided ceiling effects and were highly correlated with absolute sensitivities. Point-by-point test-retest limits (95% confidence intervals) were +/-4.2 dB; repeatability was not related to mean sensitivity, eccentricity from the fovea, age, fixation location, or instability. Repeatability was also not related to the local slope of sensitivity and was unchanged in the parapapillary retina. CONCLUSIONS: Microperimetry allows reliable testing of macular function in RD patients without foveal fixation in longitudinal studies evaluating natural disease progression or efficacy of therapeutic trials. A single estimate of test-retest repeatability can be used to determine significant changes in visual function at individual retinal loci within diseased regions that are homogeneous and those that are heterogeneous and also in transition zones at high risk for disease progression.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 Clinical and Molecular Characteristics of the ABCA4 Patients Patient Age (y)/Sex ABCA4 Mutation Clinical Diagnosis Visual Acuity* Kinetic Visual Field Extent (V-4e)†Allele 1 Allele 2 Foveal Fixation P1‡ 12/M N965S W821R STGD 20/20 97 P2‡ 17/F V989A IVS28ϩ5 GϾT STGD 20/100 90 P3 18/M G1961E R1129L§ STGD 20/100 105 P4 21/F R212C P68R STGD 20/125 101 P5 24/M P1511 del1ccgC R1705Q STGD 20/25 114 P6 31/M G863A R1108C STGD 20/25 105 P7 32/F IVS40ϩ5 GϾA V935A STGD 20/32 103 P8 34/M G1961E - CRD 20/32 98 P9 37/F R681X P309R STGD 20/20 109 P10 39/M G1961E C54Y§ STGD 20/40 101 P11‡ 42/F G1961E V256V STGD 20/32 105 P12‡ 46/F G1961E V256V STGD 20/32 106 P13 52/F G1961E P1380L STGD 20/40 105 P14 58/M D600E R18W§ STGD 20/40 84 Extrafoveal Fixation P15 11/M V256V T1526M CRD 20/200 102 P16 15/M C54Y IVS35ϩ2 TϾC STGD 20/200 96 P17‡ 16/F V989A IVS28ϩ5 GϾT STGD 20/100 100 P18‡ 16/M N965S W821R STGD 20/125 100 P19 19/F A1038V/L541P N965S STGD 20/400 90 P20 21/M G863A IVS35ϩ2 TϾC STGD 20/200 99 P21 22/F G1961E R152X STGD 20/50 104 P22 27/M G863A P1660S§ STGD 20/100 98 P23 27/F G1961E A1038V/L541P STGD 20/100 109 P24 29/M G1961E T1019M STGD 20/100 104 P25 33/M P1486L deletion of exon 7 STGD 20/400 98 P26 36/F G863A C1490Y STGD 20/100 93 P27 41/M A1038V/L541P - STGD 20/125 108 P28 49/F T1526M R2030Q STGD 20/125 98 P29 55/F W855X - STGD 20/160 87 P30 56/F G1961E IVS37ϩ1 GϾA§ STGD 20/125 89 P31 60/F G1961E M669 del2ccAT STGD 20/125 104 STGD, Stargardt disease; CRD, cone-rod dystrophy.
X
ABCA4 p.Trp821Arg 22247458:42:227
status: NEWX
ABCA4 p.Trp821Arg 22247458:42:228
status: NEWX
ABCA4 p.Trp821Arg 22247458:42:985
status: NEW[hide] Novel mutations in of the ABCR gene in Italian pat... Eye (Lond). 2010 Jan;24(1):158-64. Epub 2009 Mar 6. Passerini I, Sodi A, Giambene B, Mariottini A, Menchini U, Torricelli F
Novel mutations in of the ABCR gene in Italian patients with Stargardt disease.
Eye (Lond). 2010 Jan;24(1):158-64. Epub 2009 Mar 6., [PMID:19265867]
Abstract [show]
PURPOSE: Stargardt disease (STGD) is the most prevalent juvenile macular dystrophy, and it has been associated with mutations in the ABCR gene, encoding a photoreceptor-specific transport protein. In this study, we determined the mutation spectrum in the ABCR gene in a group of Italian STGD patients. METHODS: The DNA samples of 71 Italian patients (from 62 independent pedigrees), affected with autosomal recessive STGD, were analysed for mutations in all 50 exons of the ABCR gene by the DHPLC approach (with optimization of the DHPLC conditions for mutation analysis) and direct sequencing techniques. RESULTS: In our group of STGD patients, 71 mutations were identified in 68 patients with a detection rate of 95.7%. Forty-three mutations had been already reported in the literature, whereas 28 mutations had not been previously described and were not detected in 150 unaffected control individuals of Italian origin. Missense mutations represented the most frequent finding (59.2%); G1961E was the most common mutation and it was associated with phenotypes in various degrees of severity. CONCLUSIONS: Some novel mutations in the ABCR gene were reported in a group of Italian STGD patients confirming the extensive allelic heterogeneity of this gene-probably related to the vast number of exons that favours rearrangements in the DNA sequence.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 Table 2 Summary of the mutations identified in the ABCR gene in our series of STGD Italian patients Patient Allele 1 mutation Allele 2 mutation S 1 R212C T1019M S 8 V1433I V1433I S 21 A1598D A1598D S 33 N96K G978D S 56 A1598D G1961E S 70 R212C T1019M S 71 W700X WT S 74 6750delA V767D S 77 G1961E WT S 82 Q21X G1961E S 106 C1177X G1961E S 107 C1177X G1961E S 114 T970P-F1015E - S 115 T970P-F1015E - S 120 N415K G1961E S 162 324-327insT 324-327insT S 181 W1408X G1961E S 190 C1177X A1598D S 201 G1961E WT S 202 Q21X T970P-F1015E S 213 M840R G1961E S 231 WT WT S 236 C1177X G1961E S 237 WT WT S 241 V256 splice WT S 246 IVS6-1g4t R1108C S 260 L2221P 5109delG-I156V S 321 IVS9 þ 1G4C S1099X S 328 IVS42 þ 4delG IVS35 þ 2t4c S 346 E2096K WT S 347 IVS28 þ 5g4a WT S 353 P1484S-G1961E P68L S 354 P1484S-G1961E P68L S 355 P1484S-G1961E P68L S 360 G1961E 5961delGGAC S 364 IVS35 þ 2t4c G1961E S 365 L541P/A1038V G1961E S 377 IVS42 þ 4delG IVS35 þ 2t4c S 380 R653C WT S 413 R212C T1019M S 414 A1598D G1961E S 417 G1078E G1961E S 438 R1055W WT S 440 4021ins24bp T1526M-G1961E S 449 W1479X L2140Q S 450 W1479X L2140Q S 474 W1461X G 1977S S 486 WT WT S 492 R1098C/L1970F 6548insTGAA S 528 T977P IVS40 þ 5g4a S 531 G690V Q1332X S 532 R572X L1473M-4733delGTTT S 535 IVS40 þ 5g4a 5917delG S 550 IVS40 þ 5g4a 6750delA S 555 250insCAAA WT S 556 250insCAAA WT S 575 N96H G1961E S 590 W821R IVS40 þ 5g4a S 592 V931M R1108C S 593 V767D R2030X Table 2 (Continued ) Patient Allele 1 mutation Allele 2 mutation S 594 G172S G1961E S 602 P1380L G1961E S 607 E616K L1580S-K2172R S 640 250insCAAA S1696N S 694 IVS35 þ 2t4c G1961E S 725 IVS13 þ 1g4a Q1376 splice S 731 L541P-A1038V G1961E S 755 N965S IVS40 þ 5g4a S 789 E1087K G1977S S 968 T1019M G1961E S 992 R212C G1961E Bold values indicate novel mutations.
X
ABCA4 p.Trp821Arg 19265867:57:1406
status: NEWX
ABCA4 p.Trp821Arg 19265867:57:1416
status: NEW[hide] Denaturing HPLC profiling of the ABCA4 gene for re... Clin Chem. 2004 Aug;50(8):1336-43. Epub 2004 Jun 10. Stenirri S, Fermo I, Battistella S, Galbiati S, Soriani N, Paroni R, Manitto MP, Martina E, Brancato R, Allikmets R, Ferrari M, Cremonesi L
Denaturing HPLC profiling of the ABCA4 gene for reliable detection of allelic variations.
Clin Chem. 2004 Aug;50(8):1336-43. Epub 2004 Jun 10., [PMID:15192030]
Abstract [show]
BACKGROUND: Mutations in the retina-specific ABC transporter (ABCA4) gene have been associated with several forms of macular degenerations. Because the high complexity of the molecular genotype makes scanning of the ABCA4 gene cumbersome, we describe here the first use of denaturing HPLC (DHPLC) to screen for ABCA4 mutations. METHODS: Temperature conditions were designed for all 50 exons based on effective separation of 83 samples carrying 86 sequence variations and 19 mutagenized controls. For validation, samples from 23 previously characterized Stargardt patients were subjected to DHPLC profiling. Subsequently, samples from a cohort of 30 patients affected by various forms of macular degeneration were subjected to DHPLC scanning under the same conditions. RESULTS: DHPLC profiling not only identified all 132 sequence alterations previously detected by double-gradient denaturing gradient gel electrophoresis but also identified 5 sequence alterations that this approach had missed. Moreover, DHPLC scanning of an additional panel of 30 previously untested patients led to the identification of 26 different mutations and 29 polymorphisms, accounting for 203 sequence variations on 29 of the 30 patients screened. In total, the DHPLC approach allowed us to identify 16 mutations that had never been reported before. CONCLUSIONS: These results provide strong support for the use of DHPLC for molecular characterization of the ABCA4 gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
35 Exon Genotypesa Exon Genotypesa 1b M1V (1A>G) (11) 24 3523-28TϾC (12) R18W (52C>T) (11) 25 G1203D (3608G>A)b 3 250_251insCAAA (7) 27 R1300X (3898C>T) (12) N96K (288C>A) R1300Q (3899G>A) (11) 302 ϩ 26 GϾA (13) 28 P1380L (4139CϾT) (14) 4 P143L (428C>T) (10) P1401P (4203CϾA) (15) 5 R152Q (455G>A) (4) 4253 ϩ 43GϾA (12) 6 571-1GϾT (4) 29 4253 ϩ 13GϾA (12) R212H (635G>A) (16) 4354-38GϾA (4) C230S (688T>A) (12) 30a 4466 ϩ 3GϾA (4) 641delG (9) 30b C1490Y (4469G>A) (17) 10 1240-14CϾT (13) P1512R (4535C>G) (4) H423R (1268ϾG) (13) 31 T1526M (4577C>T) (14) 1357 ϩ 11delG (16) 33/34 A1598D (4793C>A) (4) H423H (1269CϾT) (13) 35 4947delC (14) 11 1387delTT (4) 5018 ؉ 2T>C (7) R500R (1500GϾA) (4) 39 H1838Y (5512C>T) (14) 12 L541P (1622T>C) (14) 40 N1868I (5603AϾT) (13) R572Q (1715G>A) (17) L1894L (5682GϾC) (15) 13 Y639X (1917C>G) (17) 5714 ؉ 5G>A C641S (1922G>C) (4) 41 L1938L (5814AϾG) (12) 14 R653C (1957C>T) (12) 42 5836-43CϾA W700X (2099G>A) (4) 5836-11GϾA (15) 3607 ϩ 49TϾC P1948I (5843CϾT) (15) 15 V767D (2300T>A) (7) P1948P (5844AϾG) (15) 16 W821R (2461T>A) (14) G1961E (5882G>A) (14) 17 2588-33CϾTb 43 L1970F (5908C>T) (11) G863A (2588G>C) (17) 44 6006-16AϾG (16) 18 2654-36CϾT (4) I2023I (6069CϾT) (14) T897I (2690C>T) (7) L2027F (6079C>T) (14) 19 R943Q (2828GϾA) (13) 45 V2050L (6148G>C) (14) Y954D (2860T>G) (4) 46 R2107H (6320G>A) (18) N965S (2894A>G) (14) 6386 ؉ 2G>C (10) 20 G978D (2933G>A) (4) 47 R2139W (6415C>T) (14) L988L (2964CϾT) (4) R2149L (6446G>T) (4) 21 E1022K (3064G>A) (4) C2150Y (6449G>A) (19) A1038V (3113C>T) (14) 48 D2177N (6529G>A) (17) G1050D (3149G>A) (4) L2241V (6721C>G) (12) 3211_3212insGT (14) 6729 ϩ 21CϾT (15) 22 E1087K (3259G>A) (14) 49 6730-3TϾC (15) R1098C (3292C>T) (12) S2255I (6764GϾT) (13) S1099P (3295T>C) (4) 6816 ϩ 28GϾC (4) R1108C (3322C>T) (14) R1129L (3386G>T) (17) a Bold indicates disease-causing mutations.
X
ABCA4 p.Trp821Arg 15192030:35:1217
status: NEW34 Exon Genotypesa Exon Genotypesa 1b M1V (1A>G) (11) 24 3523-28Tb0e;C (12) R18W (52C>T) (11) 25 G1203D (3608G>A)b 3 250_251insCAAA (7) 27 R1300X (3898C>T) (12) N96K (288C>A) R1300Q (3899G>A) (11) 302 af9; 26 Gb0e;A (13) 28 P1380L (4139Cb0e;T) (14) 4 P143L (428C>T) (10) P1401P (4203Cb0e;A) (15) 5 R152Q (455G>A) (4) 4253 af9; 43Gb0e;A (12) 6 571-1Gb0e;T (4) 29 4253 af9; 13Gb0e;A (12) R212H (635G>A) (16) 4354-38Gb0e;A (4) C230S (688T>A) (12) 30a 4466 af9; 3Gb0e;A (4) 641delG (9) 30b C1490Y (4469G>A) (17) 10 1240-14Cb0e;T (13) P1512R (4535C>G) (4) H423R (1268b0e;G) (13) 31 T1526M (4577C>T) (14) 1357 af9; 11delG (16) 33/34 A1598D (4793C>A) (4) H423H (1269Cb0e;T) (13) 35 4947delC (14) 11 1387delTT (4) 5018 d19; 2T>C (7) R500R (1500Gb0e;A) (4) 39 H1838Y (5512C>T) (14) 12 L541P (1622T>C) (14) 40 N1868I (5603Ab0e;T) (13) R572Q (1715G>A) (17) L1894L (5682Gb0e;C) (15) 13 Y639X (1917C>G) (17) 5714 d19; 5G>A C641S (1922G>C) (4) 41 L1938L (5814Ab0e;G) (12) 14 R653C (1957C>T) (12) 42 5836-43Cb0e;A W700X (2099G>A) (4) 5836-11Gb0e;A (15) 3607 af9; 49Tb0e;C P1948I (5843Cb0e;T) (15) 15 V767D (2300T>A) (7) P1948P (5844Ab0e;G) (15) 16 W821R (2461T>A) (14) G1961E (5882G>A) (14) 17 2588-33Cb0e;Tb 43 L1970F (5908C>T) (11) G863A (2588G>C) (17) 44 6006-16Ab0e;G (16) 18 2654-36Cb0e;T (4) I2023I (6069Cb0e;T) (14) T897I (2690C>T) (7) L2027F (6079C>T) (14) 19 R943Q (2828Gb0e;A) (13) 45 V2050L (6148G>C) (14) Y954D (2860T>G) (4) 46 R2107H (6320G>A) (18) N965S (2894A>G) (14) 6386 d19; 2G>C (10) 20 G978D (2933G>A) (4) 47 R2139W (6415C>T) (14) L988L (2964Cb0e;T) (4) R2149L (6446G>T) (4) 21 E1022K (3064G>A) (4) C2150Y (6449G>A) (19) A1038V (3113C>T) (14) 48 D2177N (6529G>A) (17) G1050D (3149G>A) (4) L2241V (6721C>G) (12) 3211_3212insGT (14) 6729 af9; 21Cb0e;T (15) 22 E1087K (3259G>A) (14) 49 6730-3Tb0e;C (15) R1098C (3292C>T) (12) S2255I (6764Gb0e;T) (13) S1099P (3295T>C) (4) 6816 af9; 28Gb0e;C (4) R1108C (3322C>T) (14) R1129L (3386G>T) (17) a Bold indicates disease-causing mutations.
X
ABCA4 p.Trp821Arg 15192030:34:1217
status: NEW[hide] Cosegregation and functional analysis of mutant AB... Hum Mol Genet. 2001 Nov 1;10(23):2671-8. Shroyer NF, Lewis RA, Yatsenko AN, Wensel TG, Lupski JR
Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration.
Hum Mol Genet. 2001 Nov 1;10(23):2671-8., [PMID:11726554]
Abstract [show]
Mutations in ABCR (ABCA4) have been reported to cause a spectrum of autosomal recessively inherited retinopathies, including Stargardt disease (STGD), cone-rod dystrophy and retinitis pigmentosa. Individuals heterozygous for ABCR mutations may be predisposed to develop the multifactorial disorder age-related macular degeneration (AMD). We hypothesized that some carriers of STGD alleles have an increased risk to develop AMD. We tested this hypothesis in a cohort of families that manifest both STGD and AMD. With a direct-sequencing mutation detection strategy, we found that AMD-affected relatives of STGD patients are more likely to be carriers of pathogenic STGD alleles than predicted based on chance alone. We further investigated the role of AMD-associated ABCR mutations by testing for expression and ATP-binding defects in an in vitro biochemical assay. We found that mutations associated with AMD have a range of assayable defects ranging from no detectable defect to apparent null alleles. Of the 21 missense ABCR mutations reported in patients with AMD, 16 (76%) show abnormalities in protein expression, ATP-binding or ATPase activity. We infer that carrier relatives of STGD patients are predisposed to develop AMD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
97 Pedigree Maternal allele Paternal allele AMD relative A priori Cosegregation AR19 pGM, -6 0.5 - AR33 [W1408R; R1640W] R24H and D1532N mA, -16 0.5 Yes AR59 4232insTATG C1488R pGM, -6 0.5 No AR80 T1526M pGF, -5 0.5 - AR80 T1526M mGF, -7 0.5 Yes AR125 4947delC C1488R pGM, -7 0.5 Yes AR215 [H1406Y; V2050L] pGM, -5 0.5 - AR218 2160+1G→C G1961E mA, -8 0.5 No AR262 W821R pGGF, -7 0.25 No AR271 P68R E1087K mGA, -6 0.25 No AR335 D645N F608I mGM, -9 0.5 Yes AR382 R1108C mGM, -6 0.5 Yes AR389 E2096K 5714+5G→A pGM, -8 0.5 Yes AR397 5196+1G→A 5585-1G→A mA, -5 0.5 No AR410 A1038V 768G→T pC, -5 0.25 Yes AR422 pGM, -6 0.5 - AR423 P1380L D1532N pGF, -4 0.5 No AR468 P1380L P1380L mU, -9 0.5 Yes AR484 L2027F G550R mGU, -5 0.25 Yes AR562 R2107H 3050+5G→A pGU, -5 0.25 No AR643 5196+2T→C L2027F mU, -4 0.5 Yes AR661 P1380L C54Y mGF, -6 0.5 Yes AR669 664del13 pGF, -4 0.5 No AR534 W821R P1380L pGM, -7 0.5 Yes (17) Family 1 R212C I2113M mGM, I-2 0.5 Yes (27) Family 2 R1108C R2107H mGM, I-2 0.5 Yes (27) Family 3 R212C G1977S mGF, I-1 0.5 Yes (27) 10.25 15 unlikely to account for many of the remaining alleles (our unpublished observations).
X
ABCA4 p.Trp821Arg 11726554:97:367
status: NEWX
ABCA4 p.Trp821Arg 11726554:97:368
status: NEWX
ABCA4 p.Trp821Arg 11726554:97:911
status: NEW[hide] An analysis of allelic variation in the ABCA4 gene... Invest Ophthalmol Vis Sci. 2001 May;42(6):1179-89. Webster AR, Heon E, Lotery AJ, Vandenburgh K, Casavant TL, Oh KT, Beck G, Fishman GA, Lam BL, Levin A, Heckenlively JR, Jacobson SG, Weleber RG, Sheffield VC, Stone EM
An analysis of allelic variation in the ABCA4 gene.
Invest Ophthalmol Vis Sci. 2001 May;42(6):1179-89., [PMID:11328725]
Abstract [show]
PURPOSE: To assess the allelic variation of the ATP-binding transporter protein (ABCA4). METHODS: A combination of single-strand conformation polymorphism (SSCP) and automated DNA sequencing was used to systematically screen this gene for sequence variations in 374 unrelated probands with a clinical diagnosis of Stargardt disease, 182 patients with age-related macular degeneration (AMD), and 96 normal subjects. RESULTS: There was no significant difference in the proportion of any single variant or class of variant between the control and AMD groups. In contrast, truncating variants, amino acid substitutions, synonymous codon changes, and intronic variants were significantly enriched in patients with Stargardt disease when compared with their presence in subjects without Stargardt disease (Kruskal-Wallis P < 0.0001 for each variant group). Overall, there were 2480 instances of 213 different variants in the ABCA4 gene, including 589 instances of 97 amino acid substitutions, and 45 instances of 33 truncating variants. CONCLUSIONS: Of the 97 amino acid substitutions, 11 occurred at a frequency that made them unlikely to be high-penetrance recessive disease-causing variants (HPRDCV). After accounting for variants in cis, one or more changes that were compatible with HPRDCV were found on 35% of all Stargardt-associated alleles overall. The nucleotide diversity of the ABCA4 coding region, a collective measure of the number and prevalence of polymorphic sites in a region of DNA, was found to be 1.28, a value that is 9 to 400 times greater than that of two other macular disease genes that were examined in a similar fashion (VMD2 and EFEMP1).
Comments [show]
None has been submitted yet.
No. Sentence Comment
102 Thirty-Three Truncated and 98 Amino Acid-Changing Variants in the ABCA4 Gene Exon Nucleotide Change Effect (A) (B) AMD (n ؍ 182) Control (n ؍ 96) STGD (n ؍ 374) Allele Prevalence 2 106delT FS NS 0 0 1 Ͻ0.01 2 160 ϩ 1g 3 a Splice site NS 0 0 1 Ͻ0.01 3 161G 3 A Cys54Tyr NS 0 0 6 Ͻ0.01 3 179C 3 T Ala60Val NS 0 0 2 Ͻ0.01 3 194G 3 A Gly65Glu NS 0 0 2 Ͻ0.01 3 223T 3 G Cys75Gly NS 0 0 2 Ͻ0.01 3 247delCAAA FS NS 0 0 2 Ͻ0.01 3 298C 3 T Ser100Pro NS 0 0 1 Ͻ0.01 5 454C 3 T Arg152Stop NS 0 0 2 Ͻ0.01 6 574G 3 A Ala192Thr NS 0 0 1 Ͻ0.01 6 618C 3 G Ser206Arg NS 0 0 3 Ͻ0.01 6 634C 3 T Arg212Cys 0.02 Yes 0 0 7 0.01 6 635G 3 A Arg212His NS 2 2 6 0.01 6 658C 3 T Arg220Cys NS 0 0 2 Ͻ0.01 6 661delG FS NS 0 0 1 Ͻ0.01 666delAAAGACGGTGC 6 GC FS NS 0 0 1 Ͻ0.01 6 746A 3 C Asp249Gly NS 0 0 1 Ͻ0.01 8 899C 3 A Thr300Asn NS 0 0 1 Ͻ0.01 8 997C 3 T Arg333Trp NS 0 0 1 Ͻ0.01 9 1140T 3 A Asn380Lys NS 0 0 1 Ͻ0.01 9 1222C 3 T Arg408Stop NS 0 0 1 Ͻ0.01 10 1268A 3 G His423Arg NS 1 0 7 0.01 10 1335C 3 G Ser445Arg NS 0 0 1 Ͻ0.01 10 1344delG FS NS 0 0 1 Ͻ0.01 11 1411G 3 A Glu471Lys NS 0 0 3 Ͻ0.01 11 1513delATCAC FS NS 0 0 1 Ͻ0.01 12 1622T 3 C Leu541Pro 0.001 Yes 0 0 11 0.01 13 1804C 3 T Arg602Trp NS 0 0 3 Ͻ0.01 13 1805G 3 A Arg602Gln NS 0 0 1 Ͻ0.01 13 1819G 3 T Gly607Trp NS 0 0 1 Ͻ0.01 13 1823T 3 A Phe608Ile NS 0 0 1 Ͻ0.01 13 1927G 3 A Val643Met NS 0 0 1 Ͻ0.01 14 1989G 3 T Trp663Stop NS 0 0 1 Ͻ0.01 14 2005delAT FS NS 0 0 3 Ͻ0.01 14 2041C 3 T Arg681Stop NS 0 0 2 Ͻ0.01 14 2147C 3 T Thr716Met NS 0 0 1 Ͻ0.01 15 2291G 3 A Cys764Tyr NS 0 0 1 Ͻ0.01 15 2294G 3 A Ser765Asn NS 0 0 1 Ͻ0.01 15 2300T 3 A Val767Asp NS 0 0 2 Ͻ0.01 16 2385del16bp FS NS 0 0 1 Ͻ0.01 16 2453G 3 A Gly818Glu NS 0 0 1 Ͻ0.01 16 2461T 3 A Trp821Arg NS 0 0 1 Ͻ0.01 16 2546T 3 C Val849Ala NS 0 0 4 Ͻ0.01 16 2552G 3 A Gly851Asp NS 0 0 1 Ͻ0.01 16 2560G 3 A Ala854Thr NS 0 0 1 Ͻ0.01 17 2588G 3 C Gly863Ala 0.0006 No 2 2 28 0.02 17 2617T 3 C Phe873Leu NS 0 0 1 Ͻ0.01 18 2690C 3 T Thr897Ile NS 0 0 1 Ͻ0.01 18 2701A 3 G Thr901Ala NS 0 1 0 Ͻ0.01 18 2703A 3 G Thr901Arg NS 0 0 2 Ͻ0.01 19 2828G 3 A Arg943Gln NS 20 13 37 0.05 19 2883delC FS NS 0 0 1 Ͻ0.01 20 2894A 3 G Asn965Ser NS 0 0 3 Ͻ0.01 19 2912C 3 A Thr971Asn NS 0 0 1 Ͻ0.01 19 2915C 3 A Thr972Asn NS 0 0 1 Ͻ0.01 20 2920T 3 C Ser974Pro NS 0 0 1 Ͻ0.01 20 2966T 3 C Val989Ala NS 0 0 2 Ͻ0.01 20 2977del8bp FS NS 0 0 1 Ͻ0.01 20 3041T 3 G Leu1014Arg NS 0 0 1 Ͻ0.01 21 3055A 3 G Thr1019Ala NS 0 0 1 Ͻ0.01 21 3064G 3 A Glu1022Lys NS 0 0 1 Ͻ0.01 21 3091A 3 G Lys1031Glu NS 0 0 1 Ͻ0.01 21 3113G 3 T Ala1038Val 0.001 Yes 1 0 17 0.01 22 3205insAA FS NS 0 0 1 Ͻ0.01 22 3261G 3 A Glu1087Lys NS 0 0 2 Ͻ0.01 22 3322C 3 T Arg1108Cys 0.04 Yes 0 0 6 Ͻ0.01 22 3323G 3 A Arg1108His NS 0 0 1 Ͻ0.01 23 3364G 3 A Glu1122Lys NS 0 0 1 Ͻ0.01 (continues) Exon Nucleotide Change Effect (A) (B) AMD (n ؍ 182) Control (n ؍ 96) STGD (n ؍ 374) Allele Prevalence 23 3386G 3 T Arg1129Leu NS 0 0 3 Ͻ0.01 24 3531C 3 A Cys1158Stop NS 0 0 1 Ͻ0.01 25 3749T 3 C Leu1250Pro NS 0 0 1 Ͻ0.01 26 3835delGATTCT FS NS 0 0 1 Ͻ0.01 27 3940C 3 A Pro1314Thr NS 0 1 0 Ͻ0.01 28 4139C 3 T Pro1380Leu 0.001 Yes 0 0 10 0.01 28 4222T 3 C Trp1408Arg NS 0 0 2 Ͻ0.01 28 4223G 3 T Trp1408Leu NS 0 0 2 Ͻ0.01 28 4234C 3 T Gln1412stop NS 0 0 1 Ͻ0.01 29 4297G 3 A Val1433Ile NS 1 0 0 Ͻ0.01 29 4319T 3 C Phe1440Ser NS 0 0 1 Ͻ0.01 30 4353 - 1g 3 t Splice site NS 0 0 1 Ͻ0.01 30 4457C 3 T Pro1486Leu NS 0 0 1 Ͻ0.01 30 4462T 3 C Cys1488Arg NS 0 0 3 Ͻ0.01 30 4463G 3 T Cys1488Phe NS 0 0 2 Ͻ0.01 30 4469G 3 A Cys1490Tyr NS 0 0 3 Ͻ0.01 30 4531insC FS NS 0 0 2 Ͻ0.01 32 4538A 3 G Gln1513Arg NS 0 0 1 Ͻ0.01 30 4539 ϩ 1g 3 t Splice site NS 0 0 1 Ͻ0.01 31 4574T 3 C Leu1525Pro NS 0 0 1 Ͻ0.01 33 4733delGTTT FS NS 0 0 1 Ͻ0.01 4859delATAACAinsTCC 35 T FS NS 0 0 1 Ͻ0.01 36 4909G 3 A Ala1637Thr NS 0 0 1 Ͻ0.01 35 4918C 3 T Arg1640Trp NS 0 0 1 Ͻ0.01 35 4919G 3 A Arg1640Gln NS 0 0 1 Ͻ0.01 35 4954T 3 G Tyr1652Asp NS 0 0 1 Ͻ0.01 36 5077G 3 A Val1693Ile NS 0 0 1 Ͻ0.01 36 5186T 3 C Leu1729Pro NS 0 0 2 Ͻ0.01 36 5206T 3 C Ser1736Pro NS 0 0 1 Ͻ0.01 36 5212del11bp FS NS 0 0 1 Ͻ0.01 37 5225delTGGTGGTGGGC FS NS 0 0 1 Ͻ0.01 del LPA 37 5278del9bp 1760 NS 0 0 1 Ͻ0.01 37 5288delG FS NS 0 0 1 Ͻ0.01 38 5395A 3 G Asn1799Asp NS 0 0 1 Ͻ0.01 38 5451T 3 G Asp1817Glu NS 1 0 4 Ͻ0.01 39 5584 ϩ 5g 3 a Splice site 0.02 Yes 0 0 6 Ͻ0.01 40 5603A 3 T Asn1868Ile 0.0006 No 20 7 79 0.08 40 5651T 3 A Val1884GLu NS 0 0 1 Ͻ0.01 40 5657G 3 A Gly1886Glu NS 0 0 1 Ͻ0.01 40 5687T 3 A Val1896Asp NS 0 0 1 Ͻ0.01 40 5693G 3 A Arg1898His NS 0 0 1 Ͻ0.01 40 5714 ϩ 5g 3 a Splice site NS 0 0 1 Ͻ0.01 42 5843CA 3 TG Pro1948Leu NS 11 7 28 0.04 42 5882G 3 A Gly1961Glu Ͻ0.0001 Yes 1 0 43 0.03 43 5908C 3 T Leu1970Phe NS 1 0 1 Ͻ0.01 43 5917delG FS NS 0 0 1 Ͻ0.01 44 6079C 3 T Leu2027Phe 0.01 Yes 0 0 9 0.01 44 6088C 3 T Arg2030Stop NS 0 0 2 Ͻ0.01 44 6089G 3 A Arg2030Gln NS 0 0 1 Ͻ0.01 44 6112A 3 T Arg2038Trp NS 0 0 1 Ͻ0.01 45 6148A 3 C Val2050Leu NS 1 0 0 Ͻ0.01 46 6212A 3 T Tyr2071Phe NS 0 0 1 Ͻ0.01 45 6229C 3 T Arg2077Trp NS 0 0 2 Ͻ0.01 46 6320G 3 A Arg2107His 0.01 Yes 0 0 10 0.01 46 6383A 3 G His2128Arg NS 0 0 1 Ͻ0.01 47 6446G 3 T Arg2149Leu NS 0 0 1 Ͻ0.01 47 6449G 3 A Cys2150Tyr NS 0 0 5 Ͻ0.01 48 6529G 3 A Asp2177Asn NS 2 0 0 Ͻ0.01 48 6686T 3 C Leu2229Pro NS 0 0 1 Ͻ0.01 48 6707delTCACACAG FS NS 0 0 1 Ͻ0.01 48 6729 ϩ 1g 3 a Splice site NS 0 0 1 Ͻ0.01 49 6764G 3 T Ser2255Ile 0.009 No 16 4 54 0.06 49 6788G 3 T Arg2263Leu NS 0 0 1 Ͻ0.01 (A) The probability under the null hypothesis of similar prevalence of each variant in Stargardt (STGD) compared with non-STGD alleles (two-tailed Fisher`s exact test); (B) compatability of the variant existing in a ratio of 100:1 in STGD to control alleles, calculated using the binomial distribution.
X
ABCA4 p.Trp821Arg 11328725:102:1980
status: NEW103 Thirty-Three Truncated and 98 Amino Acid-Changing Variants in the ABCA4 Gene Exon Nucleotide Change Effect (A) (B) AMD (n d1d; 182) Control (n d1d; 96) STGD (n d1d; 374) Allele Prevalence 2 106delT FS NS 0 0 1 b0d;0.01 2 160 af9; 1g 3 a Splice site NS 0 0 1 b0d;0.01 3 161G 3 A Cys54Tyr NS 0 0 6 b0d;0.01 3 179C 3 T Ala60Val NS 0 0 2 b0d;0.01 3 194G 3 A Gly65Glu NS 0 0 2 b0d;0.01 3 223T 3 G Cys75Gly NS 0 0 2 b0d;0.01 3 247delCAAA FS NS 0 0 2 b0d;0.01 3 298C 3 T Ser100Pro NS 0 0 1 b0d;0.01 5 454C 3 T Arg152Stop NS 0 0 2 b0d;0.01 6 574G 3 A Ala192Thr NS 0 0 1 b0d;0.01 6 618C 3 G Ser206Arg NS 0 0 3 b0d;0.01 6 634C 3 T Arg212Cys 0.02 Yes 0 0 7 0.01 6 635G 3 A Arg212His NS 2 2 6 0.01 6 658C 3 T Arg220Cys NS 0 0 2 b0d;0.01 6 661delG FS NS 0 0 1 b0d;0.01 666delAAAGACGGTGC 6 GC FS NS 0 0 1 b0d;0.01 6 746A 3 C Asp249Gly NS 0 0 1 b0d;0.01 8 899C 3 A Thr300Asn NS 0 0 1 b0d;0.01 8 997C 3 T Arg333Trp NS 0 0 1 b0d;0.01 9 1140T 3 A Asn380Lys NS 0 0 1 b0d;0.01 9 1222C 3 T Arg408Stop NS 0 0 1 b0d;0.01 10 1268A 3 G His423Arg NS 1 0 7 0.01 10 1335C 3 G Ser445Arg NS 0 0 1 b0d;0.01 10 1344delG FS NS 0 0 1 b0d;0.01 11 1411G 3 A Glu471Lys NS 0 0 3 b0d;0.01 11 1513delATCAC FS NS 0 0 1 b0d;0.01 12 1622T 3 C Leu541Pro 0.001 Yes 0 0 11 0.01 13 1804C 3 T Arg602Trp NS 0 0 3 b0d;0.01 13 1805G 3 A Arg602Gln NS 0 0 1 b0d;0.01 13 1819G 3 T Gly607Trp NS 0 0 1 b0d;0.01 13 1823T 3 A Phe608Ile NS 0 0 1 b0d;0.01 13 1927G 3 A Val643Met NS 0 0 1 b0d;0.01 14 1989G 3 T Trp663Stop NS 0 0 1 b0d;0.01 14 2005delAT FS NS 0 0 3 b0d;0.01 14 2041C 3 T Arg681Stop NS 0 0 2 b0d;0.01 14 2147C 3 T Thr716Met NS 0 0 1 b0d;0.01 15 2291G 3 A Cys764Tyr NS 0 0 1 b0d;0.01 15 2294G 3 A Ser765Asn NS 0 0 1 b0d;0.01 15 2300T 3 A Val767Asp NS 0 0 2 b0d;0.01 16 2385del16bp FS NS 0 0 1 b0d;0.01 16 2453G 3 A Gly818Glu NS 0 0 1 b0d;0.01 16 2461T 3 A Trp821Arg NS 0 0 1 b0d;0.01 16 2546T 3 C Val849Ala NS 0 0 4 b0d;0.01 16 2552G 3 A Gly851Asp NS 0 0 1 b0d;0.01 16 2560G 3 A Ala854Thr NS 0 0 1 b0d;0.01 17 2588G 3 C Gly863Ala 0.0006 No 2 2 28 0.02 17 2617T 3 C Phe873Leu NS 0 0 1 b0d;0.01 18 2690C 3 T Thr897Ile NS 0 0 1 b0d;0.01 18 2701A 3 G Thr901Ala NS 0 1 0 b0d;0.01 18 2703A 3 G Thr901Arg NS 0 0 2 b0d;0.01 19 2828G 3 A Arg943Gln NS 20 13 37 0.05 19 2883delC FS NS 0 0 1 b0d;0.01 20 2894A 3 G Asn965Ser NS 0 0 3 b0d;0.01 19 2912C 3 A Thr971Asn NS 0 0 1 b0d;0.01 19 2915C 3 A Thr972Asn NS 0 0 1 b0d;0.01 20 2920T 3 C Ser974Pro NS 0 0 1 b0d;0.01 20 2966T 3 C Val989Ala NS 0 0 2 b0d;0.01 20 2977del8bp FS NS 0 0 1 b0d;0.01 20 3041T 3 G Leu1014Arg NS 0 0 1 b0d;0.01 21 3055A 3 G Thr1019Ala NS 0 0 1 b0d;0.01 21 3064G 3 A Glu1022Lys NS 0 0 1 b0d;0.01 21 3091A 3 G Lys1031Glu NS 0 0 1 b0d;0.01 21 3113G 3 T Ala1038Val 0.001 Yes 1 0 17 0.01 22 3205insAA FS NS 0 0 1 b0d;0.01 22 3261G 3 A Glu1087Lys NS 0 0 2 b0d;0.01 22 3322C 3 T Arg1108Cys 0.04 Yes 0 0 6 b0d;0.01 22 3323G 3 A Arg1108His NS 0 0 1 b0d;0.01 23 3364G 3 A Glu1122Lys NS 0 0 1 b0d;0.01 (continues) Exon Nucleotide Change Effect (A) (B) AMD (n d1d; 182) Control (n d1d; 96) STGD (n d1d; 374) Allele Prevalence 23 3386G 3 T Arg1129Leu NS 0 0 3 b0d;0.01 24 3531C 3 A Cys1158Stop NS 0 0 1 b0d;0.01 25 3749T 3 C Leu1250Pro NS 0 0 1 b0d;0.01 26 3835delGATTCT FS NS 0 0 1 b0d;0.01 27 3940C 3 A Pro1314Thr NS 0 1 0 b0d;0.01 28 4139C 3 T Pro1380Leu 0.001 Yes 0 0 10 0.01 28 4222T 3 C Trp1408Arg NS 0 0 2 b0d;0.01 28 4223G 3 T Trp1408Leu NS 0 0 2 b0d;0.01 28 4234C 3 T Gln1412stop NS 0 0 1 b0d;0.01 29 4297G 3 A Val1433Ile NS 1 0 0 b0d;0.01 29 4319T 3 C Phe1440Ser NS 0 0 1 b0d;0.01 30 4353 afa; 1g 3 t Splice site NS 0 0 1 b0d;0.01 30 4457C 3 T Pro1486Leu NS 0 0 1 b0d;0.01 30 4462T 3 C Cys1488Arg NS 0 0 3 b0d;0.01 30 4463G 3 T Cys1488Phe NS 0 0 2 b0d;0.01 30 4469G 3 A Cys1490Tyr NS 0 0 3 b0d;0.01 30 4531insC FS NS 0 0 2 b0d;0.01 32 4538A 3 G Gln1513Arg NS 0 0 1 b0d;0.01 30 4539 af9; 1g 3 t Splice site NS 0 0 1 b0d;0.01 31 4574T 3 C Leu1525Pro NS 0 0 1 b0d;0.01 33 4733delGTTT FS NS 0 0 1 b0d;0.01 4859delATAACAinsTCC 35 T FS NS 0 0 1 b0d;0.01 36 4909G 3 A Ala1637Thr NS 0 0 1 b0d;0.01 35 4918C 3 T Arg1640Trp NS 0 0 1 b0d;0.01 35 4919G 3 A Arg1640Gln NS 0 0 1 b0d;0.01 35 4954T 3 G Tyr1652Asp NS 0 0 1 b0d;0.01 36 5077G 3 A Val1693Ile NS 0 0 1 b0d;0.01 36 5186T 3 C Leu1729Pro NS 0 0 2 b0d;0.01 36 5206T 3 C Ser1736Pro NS 0 0 1 b0d;0.01 36 5212del11bp FS NS 0 0 1 b0d;0.01 37 5225delTGGTGGTGGGC FS NS 0 0 1 b0d;0.01 del LPA 37 5278del9bp 1760 NS 0 0 1 b0d;0.01 37 5288delG FS NS 0 0 1 b0d;0.01 38 5395A 3 G Asn1799Asp NS 0 0 1 b0d;0.01 38 5451T 3 G Asp1817Glu NS 1 0 4 b0d;0.01 39 5584 af9; 5g 3 a Splice site 0.02 Yes 0 0 6 b0d;0.01 40 5603A 3 T Asn1868Ile 0.0006 No 20 7 79 0.08 40 5651T 3 A Val1884GLu NS 0 0 1 b0d;0.01 40 5657G 3 A Gly1886Glu NS 0 0 1 b0d;0.01 40 5687T 3 A Val1896Asp NS 0 0 1 b0d;0.01 40 5693G 3 A Arg1898His NS 0 0 1 b0d;0.01 40 5714 af9; 5g 3 a Splice site NS 0 0 1 b0d;0.01 42 5843CA 3 TG Pro1948Leu NS 11 7 28 0.04 42 5882G 3 A Gly1961Glu b0d;0.0001 Yes 1 0 43 0.03 43 5908C 3 T Leu1970Phe NS 1 0 1 b0d;0.01 43 5917delG FS NS 0 0 1 b0d;0.01 44 6079C 3 T Leu2027Phe 0.01 Yes 0 0 9 0.01 44 6088C 3 T Arg2030Stop NS 0 0 2 b0d;0.01 44 6089G 3 A Arg2030Gln NS 0 0 1 b0d;0.01 44 6112A 3 T Arg2038Trp NS 0 0 1 b0d;0.01 45 6148A 3 C Val2050Leu NS 1 0 0 b0d;0.01 46 6212A 3 T Tyr2071Phe NS 0 0 1 b0d;0.01 45 6229C 3 T Arg2077Trp NS 0 0 2 b0d;0.01 46 6320G 3 A Arg2107His 0.01 Yes 0 0 10 0.01 46 6383A 3 G His2128Arg NS 0 0 1 b0d;0.01 47 6446G 3 T Arg2149Leu NS 0 0 1 b0d;0.01 47 6449G 3 A Cys2150Tyr NS 0 0 5 b0d;0.01 48 6529G 3 A Asp2177Asn NS 2 0 0 b0d;0.01 48 6686T 3 C Leu2229Pro NS 0 0 1 b0d;0.01 48 6707delTCACACAG FS NS 0 0 1 b0d;0.01 48 6729 af9; 1g 3 a Splice site NS 0 0 1 b0d;0.01 49 6764G 3 T Ser2255Ile 0.009 No 16 4 54 0.06 49 6788G 3 T Arg2263Leu NS 0 0 1 b0d;0.01 (A) The probability under the null hypothesis of similar prevalence of each variant in Stargardt (STGD) compared with non-STGD alleles (two-tailed Fisher`s exact test); (B) compatability of the variant existing in a ratio of 100:1 in STGD to control alleles, calculated using the binomial distribution.
X
ABCA4 p.Trp821Arg 11328725:103:1932
status: NEW[hide] The rod photoreceptor ATP-binding cassette transpo... Vision Res. 1999 Jul;39(15):2537-44. Shroyer NF, Lewis RA, Allikmets R, Singh N, Dean M, Leppert M, Lupski JR
The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial.
Vision Res. 1999 Jul;39(15):2537-44., [PMID:10396622]
Abstract [show]
The ABCR gene encodes a rod photoreceptor specific ATP-binding cassette transporter. Mutations in ABCR are associated with at least four inherited retinal dystrophies: Stargardt disease, Fundus Flavimaculatus, cone-rod dystrophy, and retinitis pigmentosa. A statistically significant increase in heterozygous ABCR alterations has been identified in patients with age-related macular degeneration (AMD). A pedigree is described which manifests both Stargardt disease and AMD in which an ABCR mutation cosegregates with both disease phenotypes. These data from this case report support the hypothesis that ABCR is a dominant susceptibility locus for AMD. Recent work regarding ABCR is reviewed and a model is presented in which decreased ABCR function correlates with severity of retinal disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
105 The proband AR534-05 had two independent allelic mutations: a 4139CT transition which by conceptual translation results in the missense amino acid substitution of leucine for proline at codon 1380 (P1380L; Fig. 1); and a 2461TA transversion, resulting in a predicted amino acid substitution of arginine for tryptophan at codon 821 (W821R; Fig. 1).
X
ABCA4 p.Trp821Arg 10396622:105:304
status: NEW140 2537-25442542 Table 1 Base alteration Amino acid changeIndividual sequence Disease phenotype Mutation type 3364 GA E1122K534-12 MissenseSTGD P1380L Missense4139 CT W821R Missense534-05 STGD 2461 TA 4139 CT P1380L Missense None5682 GC Silent 5814 AG None Silent None Silent534-07 AMD 3294 CT 4139 CT P1380L Missense 5603 AT N18681* Polymorphism SilentNone5682 GC * This base alteration found in 29/220 controls.
X
ABCA4 p.Trp821Arg 10396622:140:176
status: NEW141 Table 1 Base alteration Amino acid change Individual sequence Disease phenotype Mutation type 3364 G]A E1122K 534-12 Missense STGD P1380L Missense 4139 C]T W821R Missense 534-05 STGD 2461 T]A 4139 C]T P1380L Missense None 5682 G]C Silent 5814 A]G None Silent None Silent 534-07 AMD 3294 C]T 4139 C]T P1380L Missense 5603 A]T N18681* Polymorphism Silent None 5682 G]C * This base alteration found in 29/220 controls.
X
ABCA4 p.Trp821Arg 10396622:141:164
status: NEW[hide] Genotype/Phenotype analysis of a photoreceptor-spe... Am J Hum Genet. 1999 Feb;64(2):422-34. Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y, Lupski JR, Leppert M, Dean M
Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease.
Am J Hum Genet. 1999 Feb;64(2):422-34., [PMID:9973280]
Abstract [show]
Mutation scanning and direct DNA sequencing of all 50 exons of ABCR were completed for 150 families segregating recessive Stargardt disease (STGD1). ABCR variations were identified in 173 (57%) disease chromosomes, the majority of which represent missense amino acid substitutions. These ABCR variants were not found in 220 unaffected control individuals (440 chromosomes) but do cosegregate with the disease in these families with STGD1, and many occur in conserved functional domains. Missense amino acid substitutions located in the amino terminal one-third of the protein appear to be associated with earlier onset of the disease and may represent misfolding alleles. The two most common mutant alleles, G1961E and A1038V, each identified in 16 of 173 disease chromosomes, composed 18.5% of mutations identified. G1961E has been associated previously, at a statistically significant level in the heterozygous state, with age-related macular degeneration (AMD). Clinical evaluation of these 150 families with STGD1 revealed a high frequency of AMD in first- and second-degree relatives. These findings support the hypothesis that compound heterozygous ABCR mutations are responsible for STGD1 and that some heterozygous ABCR mutations may enhance susceptibility to AMD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
76 2 0071GrA R24H 1 19 2894ArG N965S 3 36 5196ϩ1GrA Splice 2 3 0161GrA C54Y 1 21 3113CrT A1038V 16 5196ϩ2TrC Splice 1 0179CrT A60V 1 22 3211insGT FS 1 37 5281del9 PAL1761del 1 0203CrG P68R 1 3212CrT S1071L 1 38 5459GrC R1820P 1 0223TrG C75G 1 3215TrC V1072A 1 39 5512CrT H1838Y 1 6 0634CrT R212C 1 3259GrA E1087K 1 5527CrT R1843W 1 0664del13 FS 1 3322CrT R1108C 6 40 5585-1GrA Splice 1 0746ArG D249G 1 23 3364GrA E1122K 1 5657GrA G1886E 1 8 1007CrG S336C 1 3385GrT R1129C 1 5693GrA R1898H 4 1018TrG Y340D 1 3386GrT R1129L 2 5714ϩ5GrA Splice 8 11 1411GrA E471K 1 24 3602TrG L1201R 1 42 5882GrA G1961E 16 12 1569TrG D523E 1 25 3610GrA D1204N 1 5898ϩ1GrT Splice 3 1622TrC L541P 1 28 4139CrT P1380L 4 43 5908CrT L1970F 1 1715GrA R572Q 2 4216CrT H1406Y 1 5929GrA G1977S 1 1715GrC R572P 1 4222TrC W1408R 4 6005ϩ1GrT Splice 1 13 1804CrT R602W 1 4232insTATG FS 1 44 6079CrT L2027F 11 1822TrA F608I 2 4253ϩ5GrT Splice 1 6088CrT R2030X 1 1917CrA Y639X 1 29 4297GrA V1433I 1 6089GrA R2030Q 1 1933GrA D645N 1 4316GrA G1439D 2 6112CrT R2038W 1 14 2005delAT FS 1 4319TrC F1440S 1 45 6148GrC V2050L 2 2090GrA W697X 1 4346GrA W1449X 1 6166ArT K2056X 1 2160ϩ1GrC Splice 1 30a 4462TrC C1488R 2 6229CrT R2077W 1 16 2453GrA G818E 1 4457CrT P1486L 1 46 6286GrA E2096K 1 2461TrA W821R 1 30b 4469GrA C1490Y 3 6316CrT R2106C 1 2536GrC D846H 1 4539ϩ1GrT Splice 1 47 6391GrA E2131K 1 2552GrC G851D 1 31 4577CrT T1526M 7 6415CrT R2139W 1 17 2588GrC G863A 11 4594GrA D1532N 3 6445CrT R2149X 1 19 2791GrA V931M 2 35 4947delC FS 1 48 6543del36 1181del12 1 2827CrT R943W 1 36 5041del15 VVAIC1681del 2 6709insG FS 1 2884delC FS 1 5087GrA S1696N 1 NOTE.-FS ϭ frameshift.
X
ABCA4 p.Trp821Arg 9973280:76:1296
status: NEW148 Individual AR534-05, with genotype P1380L/ W821R, presented with visual impairment at age 10 years, whereas his cousins, each with genotype P1380L/ E1122K, had onset of visual impairment at ages 8-10 years.
X
ABCA4 p.Trp821Arg 9973280:148:43
status: NEW149 Two compound heterozygous families, AR335 and AR341, had both mutations in the same exon (F608I/D645N in exon 13 and P1380L/W1408R in exon 28, respectively) and had an early age at onset of 6 years.
X
ABCA4 p.Trp821Arg 9973280:149:43
status: NEW178 Table 2 ABCR Allelic Series MUTATION(S) PEDIGREE AGE AT ONSET (YEARS) MEAN AGE AT ONSET ע SD (YEARS)Allele 1 Allele 2 G863A Y340D, R772Q AR31 8 19.6 ע 12.7 51961GrA AR307 10 A1038V AR290 16 5714ϩ5GrA AR314 25 5898ϩ1GrT AR336 39 A1038V R572P AR321 6 12.5 ע 6.9 S1071L AR358 6 L1970F AR428 6 5196ϩ2TrC AR71 7 G1961E AR417 8 L2027F AR181 9 R1898H AR78 14 G863A AR290 16 G1961E AR274 20 R1108C AR393 20 R1108C AR376 25 P1380L W1408R AR341 6 8.2 ע 1.5 E1122K AR534 8 2005delAT AR357 8 D1532N AR423 9 W821R AR534 10 G1961E A1038V AR417 8 14.3 ע 4.5 C75G AR427 12 C1490Y AR370 13 2160ϩ1GrC AR218 14 4253ϩ5GrT AR373 19 A1038V AR274 20 L2027F R602W AR88 9 13.0 ע 5.5 A1038V AR181 9 R2149X AR263 9 T1526M AR326 19 T1526M AR391 19 (70%) had onset in the first 2 decades of life, but 11 (16%) had onset in the 3d decade and 6 (9%) in the 4th decade.
X
ABCA4 p.Trp821Arg 9973280:178:601
status: NEW77 2 0071GrA R24H 1 19 2894ArG N965S 3 36 5196af9;1GrA Splice 2 3 0161GrA C54Y 1 21 3113CrT A1038V 16 5196af9;2TrC Splice 1 0179CrT A60V 1 22 3211insGT FS 1 37 5281del9 PAL1761del 1 0203CrG P68R 1 3212CrT S1071L 1 38 5459GrC R1820P 1 0223TrG C75G 1 3215TrC V1072A 1 39 5512CrT H1838Y 1 6 0634CrT R212C 1 3259GrA E1087K 1 5527CrT R1843W 1 0664del13 FS 1 3322CrT R1108C 6 40 5585afa;1GrA Splice 1 0746ArG D249G 1 23 3364GrA E1122K 1 5657GrA G1886E 1 8 1007CrG S336C 1 3385GrT R1129C 1 5693GrA R1898H 4 1018TrG Y340D 1 3386GrT R1129L 2 5714af9;5GrA Splice 8 11 1411GrA E471K 1 24 3602TrG L1201R 1 42 5882GrA G1961E 16 12 1569TrG D523E 1 25 3610GrA D1204N 1 5898af9;1GrT Splice 3 1622TrC L541P 1 28 4139CrT P1380L 4 43 5908CrT L1970F 1 1715GrA R572Q 2 4216CrT H1406Y 1 5929GrA G1977S 1 1715GrC R572P 1 4222TrC W1408R 4 6005af9;1GrT Splice 1 13 1804CrT R602W 1 4232insTATG FS 1 44 6079CrT L2027F 11 1822TrA F608I 2 4253af9;5GrT Splice 1 6088CrT R2030X 1 1917CrA Y639X 1 29 4297GrA V1433I 1 6089GrA R2030Q 1 1933GrA D645N 1 4316GrA G1439D 2 6112CrT R2038W 1 14 2005delAT FS 1 4319TrC F1440S 1 45 6148GrC V2050L 2 2090GrA W697X 1 4346GrA W1449X 1 6166ArT K2056X 1 2160af9;1GrC Splice 1 30a 4462TrC C1488R 2 6229CrT R2077W 1 16 2453GrA G818E 1 4457CrT P1486L 1 46 6286GrA E2096K 1 2461TrA W821R 1 30b 4469GrA C1490Y 3 6316CrT R2106C 1 2536GrC D846H 1 4539af9;1GrT Splice 1 47 6391GrA E2131K 1 2552GrC G851D 1 31 4577CrT T1526M 7 6415CrT R2139W 1 17 2588GrC G863A 11 4594GrA D1532N 3 6445CrT R2149X 1 19 2791GrA V931M 2 35 4947delC FS 1 48 6543del36 1181del12 1 2827CrT R943W 1 36 5041del15 VVAIC1681del 2 6709insG FS 1 2884delC FS 1 5087GrA S1696N 1 NOTE.-FS afd; frameshift.
X
ABCA4 p.Trp821Arg 9973280:77:1302
status: NEW179 Table 2 ABCR Allelic Series MUTATION(S) PEDIGREE AGE AT ONSET (YEARS) MEAN AGE AT ONSET cf2; SD (YEARS) Allele 1 Allele 2 G863A Y340D, R772Q AR31 8 19.6 cf2; 12.7 51961GrA AR307 10 A1038V AR290 16 5714af9;5GrA AR314 25 5898af9;1GrT AR336 39 A1038V R572P AR321 6 12.5 cf2; 6.9 S1071L AR358 6 L1970F AR428 6 5196af9;2TrC AR71 7 G1961E AR417 8 L2027F AR181 9 R1898H AR78 14 G863A AR290 16 G1961E AR274 20 R1108C AR393 20 R1108C AR376 25 P1380L W1408R AR341 6 8.2 cf2; 1.5 E1122K AR534 8 2005delAT AR357 8 D1532N AR423 9 W821R AR534 10 G1961E A1038V AR417 8 14.3 cf2; 4.5 C75G AR427 12 C1490Y AR370 13 2160af9;1GrC AR218 14 4253af9;5GrT AR373 19 A1038V AR274 20 L2027F R602W AR88 9 13.0 cf2; 5.5 A1038V AR181 9 R2149X AR263 9 T1526M AR326 19 T1526M AR391 19 (70%) had onset in the first 2 decades of life, but 11 (16%) had onset in the 3d decade and 6 (9%) in the 4th decade.
X
ABCA4 p.Trp821Arg 9973280:179:538
status: NEW[hide] Inner and outer retinal changes in retinal degener... Invest Ophthalmol Vis Sci. 2014 Mar 20;55(3):1810-22. doi: 10.1167/iovs.13-13768. Huang WC, Cideciyan AV, Roman AJ, Sumaroka A, Sheplock R, Schwartz SB, Stone EM, Jacobson SG
Inner and outer retinal changes in retinal degenerations associated with ABCA4 mutations.
Invest Ophthalmol Vis Sci. 2014 Mar 20;55(3):1810-22. doi: 10.1167/iovs.13-13768., [PMID:24550365]
Abstract [show]
PURPOSE: To investigate in vivo inner and outer retinal microstructure and effects of structural abnormalities on visual function in patients with retinal degeneration caused by ABCA4 mutations (ABCA4-RD). METHODS: Patients with ABCA4-RD (n = 45; age range, 9-71 years) were studied by spectral-domain optical coherence tomography (OCT) scans extending from the fovea to 30 degrees eccentricity along horizontal and vertical meridians. Thicknesses of outer and inner retinal laminae were analyzed. Serial OCT measurements available over a mean period of 4 years (range, 2-8 years) allowed examination of the progression of outer and inner retinal changes. A subset of patients had dark-adapted chromatic static threshold perimetry. RESULTS: There was a spectrum of photoreceptor layer thickness changes from localized central retinal abnormalities to extensive thinning across central and near midperipheral retina. The inner retina also showed changes. There was thickening of the inner nuclear layer (INL) that was mainly associated with regions of photoreceptor loss. Serial data documented only limited change in some patients while others showed an increase in outer nuclear layer (ONL) thinning accompanied by increased INL thickening in some regions imaged. Visual function in regions both with and without INL thickening was describable with a previously defined model based on photoreceptor quantum catch. CONCLUSIONS: Inner retinal laminar abnormalities, as in other human photoreceptor diseases, can be a feature of ABCA4-RD. These changes are likely due to the retinal remodeling that accompanies photoreceptor loss. Rod photoreceptor-mediated visual loss in retinal regionswith inner laminopathy at the stages studied did not exceed the prediction from photoreceptor loss alone.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 Characteristics of the ABCA4-Related Retinal Disease Patients Patient Age at Visits, y Sex Allele 1 Allele 2 Previous Report*ߤ P1 9, 12 M E341G F608I P2 9, 15 M R681X C2150Y P28* P3ߥ 12 M N965S W821R P1ߤ P4 13, 16 M V256V T1526M P21*, P15ߤ P5 14, 20 F W1408R IVS40&#fe;5 G>A P49* P6ߥ 16 F V989A IVS28&#fe;5 G>T P17ߤ P7ߥ 16 M N965S W821R P18ߤ P8 18, 20 F Y362X IVS38-10 T>C P9ߥ 18 F V989A IVS28&#fe;5 G>T P10 18, 22 M G1961E R1129L P3ߤ P11 20 M R1640Q c.5174_5175insG P12ߥ 20 M G1961E G1961E/P68L P13 22, 25 M G863A IVS35&#fe;2 T>C P20ߤ P14 22, 24 F G1961E R152X P12*, P21ߤ P15ߥ 23 M G1961E G1961E/P68L P16 25, 27 M G1961E R152X P11* P17 26, 32 F L1940P R1129L P64* P18 27, 34 F R1925G A1038V/L541P P19 27, 29 M c.4530_4531insC R1705Q P52*, P5ߤ P20 28, 30 F G1961E A1038V/L541P P23ߤ P21 31, 35 M T1019M G1961E P34* P22ߥ 32, 37 M P1486L Deletion of exon 7 P25ߤ P23 33, 35 M G863A R1108C P29*, P6ߤ P24 34, 37 F IVS40&#fe;5 G>A V935A P32*, P7ߤ P25 34 M G1961E &#a7; P8ߤ P26 37, 43 F C54Y G863A P4* P27 39, 44 F G863A C1490Y P30*, P26ߤ P28 40 M G1961E C54Y P7*, P10ߤ P29 41 F IVS38-10 T>C E1087D P59* P30ߥ 43, 47 F G1961E V256V P23*, P11ߤ P31ߥ 47, 51 F P1486L Deletion of exon 7 P32 47 M Y245X Y245X P20* P33ߥ 48, 51 F G1961E V256V P22*, P12ߤ P34 48, 50 F c.3208_3209insTG IVS40&#fe;5 G>A P35 50, 54 M V1433I L2027F P50* P36ߥ 52, 55 F T1526M R2030Q P55*, P28ߤ P37 53, 59 F G1961E P1380L P47*, P13ߤ P38ߥ 53, 61 M L1940P IVS40&#fe;5 G>A P61* P39 58 M D600E R18W P2*, P14ߤ P40 59, 62 M E1122K G1961E P44* P41 59, 62 F R1640Q G1961E P58* P42ߥ 62 F T1526M R2030Q P54* P43ߥ 64, 68 M L1940P IVS40&#fe;5 G>A P62* P44 68 F R1108C IVS40&#fe;5 G>A P42* P45 71 F IVS38-10 T>C &#a7; Novel variants are bold and italicized.
X
ABCA4 p.Trp821Arg 24550365:74:206
status: NEWX
ABCA4 p.Trp821Arg 24550365:74:373
status: NEW[hide] Quantitative fundus autofluorescence in recessive ... Invest Ophthalmol Vis Sci. 2014 May 1;55(5):2841-52. doi: 10.1167/iovs.13-13624. Burke TR, Duncker T, Woods RL, Greenberg JP, Zernant J, Tsang SH, Smith RT, Allikmets R, Sparrow JR, Delori FC
Quantitative fundus autofluorescence in recessive Stargardt disease.
Invest Ophthalmol Vis Sci. 2014 May 1;55(5):2841-52. doi: 10.1167/iovs.13-13624., [PMID:24677105]
Abstract [show]
PURPOSE: To quantify fundus autofluorescence (qAF) in patients with recessive Stargardt disease (STGD1). METHODS: A total of 42 STGD1 patients (ages: 7-52 years) with at least one confirmed disease-associated ABCA4 mutation were studied. Fundus AF images (488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Texture factor (TF) was calculated to characterize inhomogeneities in the AF image and patients were assigned to the phenotypes of Fishman I through III. RESULTS: Quantified fundus autofluorescence in 36 of 42 patients and TF in 27 of 42 patients were above normal limits for age. Young patients exhibited the relatively highest qAF, with levels up to 8-fold higher than healthy eyes. Quantified fundus autofluorescence and TF were higher in Fishman II and III than Fishman I, who had higher qAF and TF than healthy eyes. Patients carrying the G1916E mutation had lower qAF and TF than most other patients, even in the presence of a second allele associated with severe disease. CONCLUSIONS: Quantified fundus autofluorescence is an indirect approach to measuring RPE lipofuscin in vivo. We report that ABCA4 mutations cause significantly elevated qAF, consistent with previous reports indicating that increased RPE lipofuscin is a hallmark of STGD1. Even when qualitative differences in fundus AF images are not evident, qAF can elucidate phenotypic variation. Quantified fundus autofluorescence will serve to establish genotype-phenotype correlations and as an outcome measure in clinical trials.
Comments [show]
None has been submitted yet.
No. Sentence Comment
84 [A854T; A1038V]; p.C2150Y 512 2.3 26 F 52 1 0.70 0.48 I - p.R212C 722 2.0 27 F 52 13 1.00 1.00 - I p.A1038V; p.A848D 459 4.1 28 M 20 5 0.30 0.40 I - p.L2027F; p.R1108H 507 2.3 29 M 23 7 1.00 1.00 I I p.G1961E; p.R2030Q 334 347 2.4 2.0 30 M 44 26 0.70 0.70 - II p.P1380L; p.R1108H 453 4.7 31 F 30 22 1.00 1.30 - I p.G1961E; c.6005&#fe;1G > T 428 2.3 32 M 12 8 0.40 0.40 I - p.W821R; p.C2150Y 306 2.0 33 F 20 9 0.88 0.88 III III p.R602W; p.M1882I 650 655 2.6 2.5 34 F 47 4 0.40 0.40 I - p.G1961E; p.R1129C 400 2.5 35 F 19 3 0.70 0.48 II II p.
X
ABCA4 p.Trp821Arg 24677105:84:375
status: NEW[hide] The external limiting membrane in early-onset Star... Invest Ophthalmol Vis Sci. 2014 Aug 19;55(10):6139-49. doi: 10.1167/iovs.14-15126. Lee W, Noupuu K, Oll M, Duncker T, Burke T, Zernant J, Bearelly S, Tsang SH, Sparrow JR, Allikmets R
The external limiting membrane in early-onset Stargardt disease.
Invest Ophthalmol Vis Sci. 2014 Aug 19;55(10):6139-49. doi: 10.1167/iovs.14-15126., [PMID:25139735]
Abstract [show]
PURPOSE: To describe pathologic changes of the external limiting membrane (ELM) in young patients with early-onset Stargardt (STGD1) disease. METHODS: Twenty-six STGD1 patients aged younger than 20 years with confirmed disease-causing adenosine triphosphate-binding cassette, subfamily A, member 4 (ABCA4) alleles and 30 age-matched unaffected individuals were studied. Spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (AF), and color fundus photography (CFP) images, as well as full-field electroretinograms were obtained and analyzed for one to four visits in each patient. RESULTS: The ELM in all patients exhibited a distinct thickening that was not observed in unaffected individuals. In addition, accumulations of reflective deposits were noted in the outer nuclear layer in every patient. Four patients exhibited a concave protuberance or bulging of a thickened and hyperreflective ELM band within the fovea containing preserved photoreceptors. Longitudinal SD-OCT data in several patients revealed the persistence of this ELM abnormality over a period of time (1-4 years). Furthermore, the edges of the inner segment ellipsoid band appeared to recede earlier than the ELM band in active lesions. CONCLUSIONS: Structural changes seen in the ELM of this cohort may reflect a gliotic response to cellular stress at the photoreceptor level in early-onset STGD1.
Comments [show]
None has been submitted yet.
No. Sentence Comment
93 [W1408R;R1640W] P20 18 African American 20/125 (0.80) 20/50 (0.40) 2 2 Mid 5 p.R1640W ND P21 12 Caucasian 20/50 (0.40) 20/50 (0.40) 1 1 6 p.W821R p.C2150Y P22 17 Indian 20/40 (0.30) 20/100 (0.70) 1 n/a Mid 3 p.G1961E c.6729&#fe;4_&#fe;18del P23 10 Indian 20/400 (1.30) 20/400 (1.30) 2 2 Early 3 c.885delC p.R537C P24 19 Caucasian 20/20 (0.00) 20/20 (0.00) 1 n/a ND p.G863A c.5898&#fe;1G>A P25 16 Middle Eastern 20/80 (0.60) 20/100 (0.70) 1 1 4 p.A1773V p.G1961E P26 17 Caucasian 20/150 (0.88) 20/200 (1.00) 1 1 2 p.K1547* p.R2030Q ND, not determined; n/a, not available.
X
ABCA4 p.Trp821Arg 25139735:93:140
status: NEW[hide] Quantitative fundus autofluorescence distinguishes... Ophthalmology. 2015 Feb;122(2):345-55. doi: 10.1016/j.ophtha.2014.08.017. Epub 2014 Oct 3. Duncker T, Tsang SH, Lee W, Zernant J, Allikmets R, Delori FC, Sparrow JR
Quantitative fundus autofluorescence distinguishes ABCA4-associated and non-ABCA4-associated bull's-eye maculopathy.
Ophthalmology. 2015 Feb;122(2):345-55. doi: 10.1016/j.ophtha.2014.08.017. Epub 2014 Oct 3., [PMID:25283059]
Abstract [show]
PURPOSE: Quantitative fundus autofluorescence (qAF) and spectral-domain optical coherence tomography (SD OCT) were performed in patients with bull's-eye maculopathy (BEM) to identify phenotypic markers that can aid in the differentiation of ABCA4-associated and non-ABCA4-associated disease. DESIGN: Prospective cross-sectional study at an academic referral center. SUBJECTS: Thirty-seven BEM patients (age range, 8-60 years) were studied. All patients exhibited a localized macular lesion exhibiting a smooth contour and qualitatively normal-appearing surrounding retina without flecks. Control values consisted of previously published data from 277 healthy subjects (374 eyes; age range, 5-60 years) without a family history of retinal dystrophy. METHODS: Autofluorescence (AF) images (30 degrees , 488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The grey levels (GLs) from 8 circularly arranged segments positioned at an eccentricity of approximately 7 degrees to 9 degrees in each image were calibrated to the reference (0 GL), magnification, and normative optical media density to yield qAF. In addition, horizontal SD OCT images through the fovea were obtained. All patients were screened for ABCA4 mutations using the ABCR600 microarray, next-generation sequencing, or both. MAIN OUTCOME MEASURES: Quantitative AF, correlations between AF and SD OCT, and genotyping for ABCA4 variants. RESULTS: ABCA4 mutations were identified in 22 patients, who tended to be younger (mean age, 21.9+/-8.3 years) than patients without ABCA4 mutations (mean age, 42.1+/-14.9 years). Whereas phenotypic differences were not obvious on the basis of qualitative fundus AF and SD OCT imaging, with qAF, the 2 groups of patients were clearly distinguishable. In the ABCA4-positive group, 37 of 41 eyes (19 of 22 patients) had qAF8 of more than the 95% confidence interval for age. Conversely, in the ABCA4-negative group, 22 of 26 eyes (13 of 15 patients) had qAF8 within the normal range. CONCLUSIONS: The qAF method can differentiate between ABCA4-associated and non-ABCA4-associated BEM and may guide clinical diagnosis and genetic testing.
Comments [show]
None has been submitted yet.
No. Sentence Comment
66 [L541P; A1038V] 438 432 16 M 25 White 0.60 0.60 p.S84fs p.R2107H 294 17 F 24 Black 0.70 0.88 p.G991R p.L1138P 321 326 18 M 26 White 0.00y 0.00y p.R1300* p.R2106C 419 412 19 M 11 White 0.40z 0.40z p.W821R p.C2150Y 304 296 20 F 16 White 0.70 0.40 p.K1547* p.R2030Q 481 513 21 F 13 White 1.30 1.00 pR1108C p.Q1412* 511 528 22 F 18 White 0.00 0.00 p.G863A c.5898&#fe;1G/A 465 431 Mutations in Other Genes 23 F 16 White 0.40 0.48 GUCY2D e p.R838H 152 165 24 M 53 Black 0.88 0.88 CNGA3 e p.
X
ABCA4 p.Trp821Arg 25283059:66:198
status: NEW[hide] Structural and genetic assessment of the ABCA4-ass... Invest Ophthalmol Vis Sci. 2014 Oct 9;55(11):7217-26. doi: 10.1167/iovs.14-14674. Noupuu K, Lee W, Zernant J, Tsang SH, Allikmets R
Structural and genetic assessment of the ABCA4-associated optical gap phenotype.
Invest Ophthalmol Vis Sci. 2014 Oct 9;55(11):7217-26. doi: 10.1167/iovs.14-14674., [PMID:25301883]
Abstract [show]
PURPOSE: To investigate the developmental stages and genetic etiology of the optical gap phenotype in recessive Stargardt disease (STGD1). METHODS: Single and longitudinal data points from 15 patients, including four sibling pairs, exhibiting an optical gap phenotype on spectral-domain optical coherence tomography (SD-OCT) with confirmed disease-causing ABCA4 alleles were retrospectively analyzed. Fundus images with corresponding SD-OCT scans were collected with a confocal scanning laser ophthalmoscope. Structural phenotypes were assigned to three developmental stages according to SD-OCT. The ABCA4 gene was screened in all patients. RESULTS: At least two disease-causing ABCA4 variants where identified in each patient; all except one (91%) were compound heterozygous for the p.G1961E mutation. All patients exhibited structural findings on SD-OCT that grouped into three progressive developmental stages over several years. Stage 1 was characterized by mild disruptions of the ellipsoid zone (EZ) band over the fovea. Stage 2 was a progressive expansion of the EZ band loss resulting in an empty lesion devoid of photoreceptors. Stage 3 observed a structural collapse of the inner retinal layers into the optical gap space leading to involvement and atrophy of the RPE thereafter. CONCLUSIONS: The optical gap phenotype in STGD1 can be structurally divided into three progressive stages spanning several years. This particular phenotype also appears to be highly associated with the p.G1961E mutation of ABCA4. Taken together, it appears that a focal loss of photoreceptors sequentially precedes RPE dysfunction in the early development of ABCA4-associated optical gap lesions.
Comments [show]
None has been submitted yet.
No. Sentence Comment
92 [2461T > A];[6449G > A] p.[(W821R)];[(C2150Y)] P14, F c.
X
ABCA4 p.Trp821Arg 25301883:92:28
status: NEW[hide] Correlations among near-infrared and short-wavelen... Invest Ophthalmol Vis Sci. 2014 Oct 23;55(12):8134-43. doi: 10.1167/iovs.14-14848. Duncker T, Marsiglia M, Lee W, Zernant J, Tsang SH, Allikmets R, Greenstein VC, Sparrow JR
Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain optical coherence tomography in recessive Stargardt disease.
Invest Ophthalmol Vis Sci. 2014 Oct 23;55(12):8134-43. doi: 10.1167/iovs.14-14848., [PMID:25342616]
Abstract [show]
PURPOSE: Short-wavelength (SW) fundus autofluorescence (AF) is considered to originate from lipofuscin in retinal pigment epithelium (RPE) and near-infrared (NIR) AF from melanin. In patients with recessive Stargardt disease (STGD1), we correlated SW-AF and NIR-AF with structural information obtained by spectral-domain optical coherence tomography (SD-OCT). METHODS: Twenty-four STGD1 patients (45 eyes; age 8 to 61 years) carrying confirmed disease-associated ABCA4 mutations were studied prospectively. Short-wavelength AF, NIR-AF, and SD-OCT images were acquired. RESULTS: Five phenotypes were identified according to features of the central lesion and extent of fundus change. Central zones of reduced NIR-AF were typically larger than areas of diminished SW-AF and reduced NIR-AF usually approximated areas of ellipsoid zone (EZ) loss identified by SD-OCT (group 1; r, 0.93, P < 0.0001). In patients having a central lesion with overlapping parafoveal rings of increased NIR-AF and SW-AF (group 3), the extent of EZ loss was strongly correlated with the inner diameter of the NIR-AF ring (r, 0.89, P < 0.0001) and the eccentricity of the outer border of the NIR-AF ring was greater than that of the SW-AF ring. CONCLUSIONS: Lesion areas were more completely delineated in NIR-AF images than with SW-AF. In most cases, EZ loss was observed only at locations where NIR-AF was reduced or absent, indicating that RPE cell atrophy occurs in advance of photoreceptor cell degeneration. Because SW-AF was often increased within the central area of EZ disruption, degenerating photoreceptor cells may produce lipofuscin at accelerated levels. Consideration is given to mechanisms underlying hyper-NIR-AF in conjunction with increased SW-AF.
Comments [show]
None has been submitted yet.
No. Sentence Comment
91 [L541P;A1038V] 5 14 22.4 F White Brown 0.8 0.8 p.R212C 3 15 20.2 M White Brown 0.9 0.9 p.G1961E p.P1380L 1 16 27.6 M Arabic Brown 0.0 0.0 p.R1300* p.R2106C 3 17 26.8 M White Blue 0.5 0.5 p.G1961E c.3050&#fe;5G>A 1 18 24.9 F White Hazel 0.9 0.9 p.G1961E p.C2150R 5 19 13.2 M White Blue 0.9 1.0 p.W821R p.C2150Y 3 20 61.0 F White Green 2.0 0.0 c.250_251insCAAA 2 21 36.3 F White Blue 1.3 0.1 p.N1799D 1 22 14.1 F White Green 1.0 0.9 p.R1108C p.Q1412* 2 23 18.6 M White Brown 0.9 0.9 p.G1961E p.A1773V 3 24 53.3 F White Blue 0.3 (0.2) p.R2077W 2 BCVA values in parenthesis indicate fellow eyes that were not included in the study.
X
ABCA4 p.Trp821Arg 25342616:91:295
status: NEW[hide] Near-infrared autofluorescence: its relationship t... Invest Ophthalmol Vis Sci. 2015 May;56(5):3226-34. doi: 10.1167/iovs.14-16050. Greenstein VC, Schuman AD, Lee W, Duncker T, Zernant J, Allikmets R, Hood DC, Sparrow JR
Near-infrared autofluorescence: its relationship to short-wavelength autofluorescence and optical coherence tomography in recessive stargardt disease.
Invest Ophthalmol Vis Sci. 2015 May;56(5):3226-34. doi: 10.1167/iovs.14-16050., [PMID:26024107]
Abstract [show]
PURPOSE: We compared hypoautofluorescent (hypoAF) areas detected with near-infrared (NIR-AF) and short-wavelength autofluorescence (SW-AF) in patients with recessive Stargardt disease (STGD1) to retinal structure using spectral domain optical coherence tomography (SD-OCT). METHODS: The SD-OCT volume scans, and SW-AF and NIR-AF images were obtained from 15 eyes of 15 patients with STGD1 and registered to each other. Thickness maps of the total retina, receptor-plus layer (R+, from distal border of the RPE to outer plexiform/inner nuclear layer boundary), and outer segment-plus layer (OS+, from distal border of the RPE to ellipsoid zone [EZ] band) were created from SD-OCT scans. These were compared qualitatively and quantitatively to the hypoAF areas in SW-AF and NIR-AF images. RESULTS: All eyes showed a hypoAF area in the central macula and loss of the EZ band in SD-OCT scans. The hypoAF area was larger in NIR than SW-AF images and it exceeded the area of EZ band loss for 12 eyes. The thickness maps showed progressive thinning towards the central macula, with the OS+ layer showing the most extensive and severe thinning. The central hypoAF areas on NIR corresponded to the OS+ thinned areas, while the hypoAF areas on SW-AF corresponded to the R+ thinned areas. CONCLUSIONS: Since the larger hypoAF area on NIR-AF exceeded the region of EZ band loss, and corresponded to the OS+ thinned area, RPE cell loss occurred before photoreceptor cell loss. The NIR-AF imaging may be an effective tool for following progression and predicting loss of photoreceptors in STGD1.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 Selected Demographic, Clinical, and Genetic Characteristics of the Study Cohort Patient Sex Disease-Associated ABCA4 Variant(s) Age Eye BCVA 1 F p.G1961E; c2382&#fe;1G>A 36 OS 0.8 2 M p.[L541P;A1038V] 8 OS 0.6 3 M p.G1961E; c.6729&#fe;5_&#fe;19del 18 OS 0.9 4 M p.P1380L; p.G1961E 12 OD 0.8 5 M c.571-1G>T 43 OD 0.4 6 M p.Q1003*; p.G1961E 25 OS 0 7 M p.[L541P;A1038V]; p.L2027F 8 OD N/A 8 F p.R212C; p.G1961E 22 OD 0.8 9 F p.P1380L; p.G1961E 20 OD 0.9 10 M p.R1300*; p.R2106C 26 OS 0 11 M c.3050&#fe;5G>A; p.G1961E 27 OD 0.5 12 F p.G1961E; p.C2150R 25 OD 0.7 13 M p.W821R; p.C2150Y 13 OD 0.4 14 F p.N1799D 36 OD 1.3 15 M p.A1773V; p.G1961E 19 OD 0.7 FIGURE 1.
X
ABCA4 p.Trp821Arg 26024107:74:566
status: NEW[hide] Quantitative Fundus Autofluorescence and Optical C... Invest Ophthalmol Vis Sci. 2015 Nov 1;56(12):7274-85. doi: 10.1167/iovs.15-17371. Duncker T, Stein GE, Lee W, Tsang SH, Zernant J, Bearelly S, Hood DC, Greenstein VC, Delori FC, Allikmets R, Sparrow JR
Quantitative Fundus Autofluorescence and Optical Coherence Tomography in ABCA4 Carriers.
Invest Ophthalmol Vis Sci. 2015 Nov 1;56(12):7274-85. doi: 10.1167/iovs.15-17371., [PMID:26551331]
Abstract [show]
PURPOSE: To assess whether carriers of ABCA4 mutations have increased RPE lipofuscin levels based on quantitative fundus autofluorescence (qAF) and whether spectral-domain optical coherence tomography (SD-OCT) reveals structural abnormalities in this cohort. METHODS: Seventy-five individuals who are heterozygous for ABCA4 mutations (mean age, 47.3 years; range, 9-82 years) were recruited as family members of affected patients from 46 unrelated families. For comparison, 57 affected family members with biallelic ABCA4 mutations (mean age, 23.4 years; range, 6-67 years) and two noncarrier siblings were also enrolled. Autofluorescence images (30 degrees , 488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Horizontal SD-OCT scans through the fovea were obtained and the thicknesses of the outer retinal layers were measured. RESULTS: In 60 of 65 carriers of ABCA4 mutations (age range, 9-60), qAF levels were within normal limits (95% confidence level) observed for healthy noncarrier subjects, while qAF levels of affected family members were significantly increased. Perifoveal fleck-like abnormalities were observed in fundus AF images in four carriers, and corresponding changes were detected in the outer retinal layers in SD-OCT scans. Thicknesses of the outer retinal layers were within the normal range. CONCLUSIONS: With few exceptions, individuals heterozygous for ABCA4 mutations and between the ages of 9 and 60 years do not present with elevated qAF. In a small number of carriers, perifoveal fleck-like changes were visible.
Comments [show]
None has been submitted yet.
No. Sentence Comment
34 [W1408R;R1640W] 0.00 0.00 n/a n/a 336 S33.2 F 46.5 White Mother p.G1961E 0.00 0.00 OD 422 n/a S33.3 M 48.0 White Father p.R2030Q 0.00 0.00 OD 298 n/a S34.2 M 50.3 White Brother p.G1961E 0.00 0.48 n/a 394 368 S35.2 F 55.7 White Mother p.G1961E 0.00 0.00 OS 328 362 S35.3 M 57.4 White Father c.3050&#fe;5G>A 0.00 0.00 OD n/a 265 S36.2 F 59.4 Hispanic Mother p.G1961E 0.00 0.00 OS 380 374 S37.2 F 55.1 White Mother p.G1961E 0.00 0.00 n/a n/a 352 S38.2 F 48.9 White Mother p.W821R 0.00 0.00 OD 252 279 tion in psychophysical and electrophysiological tests,21 and may demonstrate moderate to severe fundus changes.17,22 The increased accumulation of lipofuscin in the RPE of patients with biallelic mutations in ABCA4 has been documented by histology,9 by spectrofluorometry,23 and more recently by quantitative autofluorescence (qAF).24 It is still unknown, however, whether individuals heterozygous for ABCA4 mutations also have elevated lipofuscin levels due to reduced ABCA4 activity.
X
ABCA4 p.Trp821Arg 26551331:34:471
status: NEW75 [W1408R;R1640W] 1.00 1.00 n/a n/a P 33.1&#a7; M 23.0 White p.R2030Q p.G1961E 1.00 1.00 334 347 P 34.1 M 46.9 White p.C1490Y p.G1961E 0.40 0.30 376 384 P 35.1ߥ M 24.8 White c.3050&#fe;5G>A p.G1961E 0.00 0.00 381 451 P 36.1ߥ F 29.3 Hispanic p.L541P p.G1961E 0.40 0.40 479 487 P 37.1ߤ F 24.7 White p.G1961E p.C2150R 0.88 0.88 405 396 P 38.1&#a7; M 11.7 White p.W821R p.C2150Y 0.40 0.40 306 n/a P 39.1 F 12.8 White p.P1380L c.5714&#fe;5G>A 0.60 0.40 558 573 P 39.2 M 14.1 White p.P1380L c.5714&#fe;5G>A 0.88 0.88 395 462 P 40.1ߤ F 16.2 White p.K1547* p.R2030Q 0.70 0.40 481 513 P 41.1 F 19.0 White p.C54Y 0.88 0.88 n/a n/a P 42.1ߤ F 13.0 White p.R1108C p.Q1412* 1.30 1.00 511 528 P 43.1ߤ M 17.4 White p.A1773V p.G1961E 0.88 0.88 340 366 P 44.1 M 14.0 Asian p.R408* c.4248_4250del 1.30 1.30 n/a n/a P 44.2 F 7.0 Asian p.R408* c.4248_4250del 1.30 1.30 n/a n/a P 45.1 F 42.4 White p.N965Y p.P1486L 0.10 0.40 n/a n/a BCVA, best-corrected visual acuity; logMAR, logarithm of the minimum angle of resolution; OD, right eye; OS, left eye; qAF8, average quantitative autofluorescence of the 8 measurement sites from all available images per eye; n/a, not available.
X
ABCA4 p.Trp821Arg 26551331:75:376
status: NEW[hide] Next-generation sequencing of ABCA4: High frequenc... Exp Eye Res. 2015 Nov 22;145:93-99. doi: 10.1016/j.exer.2015.11.011. Sciezynska A, Ozieblo D, Ambroziak AM, Korwin M, Szulborski K, Krawczynski M, Stawinski P, Szaflik J, Szaflik JP, Ploski R, Oldak M
Next-generation sequencing of ABCA4: High frequency of complex alleles and novel mutations in patients with retinal dystrophies from Central Europe.
Exp Eye Res. 2015 Nov 22;145:93-99. doi: 10.1016/j.exer.2015.11.011., [PMID:26593885]
Abstract [show]
Variation in the ABCA4 locus has emerged as the most prevalent cause of monogenic retinal diseases. The study aimed to discover causative ABCA4 mutations in a large but not previously investigated cohort with ABCA4-related diseases originating from Central Europe and to refine the genetic relevance of all identified variants based on population evidence. Comprehensive clinical studies were performed to identify patients with Stargardt disease (STGD, n = 76) and cone-rod dystrophy (CRD, n = 16). Next-generation sequencing targeting ABCA4 was applied for a widespread screening of the gene. The results were analyzed in the context of exome data from a corresponding population (n = 594) and other large genomic databases. Our data disprove the pathogenic status of p.V552I and provide more evidence against a causal role of four further ABCA4 variants as drivers of the phenotype under a recessive paradigm. The study identifies 12 novel potentially pathogenic mutations (four of them recurrent) and a novel complex allele p.[(R152*; V2050L)]. In one third (31/92) of our cohort we detected the p.[(L541P; A1038V)] complex allele, which represents an unusually high level of genetic homogeneity for ABCA4-related diseases. Causative ABCA4 mutations account for 79% of STGD and 31% of CRD cases. A combination of p.[(L541P; A1038V)] and/or a truncating ABCA4 mutation always resulted in an early disease onset. Identification of ABCA4 retinopathies provides a specific molecular diagnosis and justifies a prompt introduction of simple precautions that may slow disease progression. The comprehensive, population-specific study expands our knowledge on the genetic landscape of retinal diseases.
Comments [show]
None has been submitted yet.
No. Sentence Comment
109 The p.W821R mutation resulting from c.2461T>A transversion was previously reported by Lewis et al. (1999), however in both of our patients thymine at position c.2461 was not substituted by adenine but by cytosine (c.2461T>C).
X
ABCA4 p.Trp821Arg 26593885:109:6
status: NEW