ABCA4 p.Glu2131Lys
ClinVar: |
c.6391G>A
,
p.Glu2131Lys
?
, not provided
|
Predicted by SNAP2: | A: N (57%), C: N (53%), D: N (72%), F: D (53%), G: N (57%), H: N (57%), I: N (57%), K: D (91%), L: N (53%), M: N (53%), N: N (66%), P: N (57%), Q: N (66%), R: N (57%), S: N (66%), T: N (66%), V: N (61%), W: D (71%), Y: N (53%), |
Predicted by PROVEAN: | A: D, C: D, D: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Characterization and classification of ATP-binding... J Biol Chem. 2006 Nov 10;281(45):34503-14. Epub 2006 Sep 7. Matsumura Y, Ban N, Ueda K, Inagaki N
Characterization and classification of ATP-binding cassette transporter ABCA3 mutants in fatal surfactant deficiency.
J Biol Chem. 2006 Nov 10;281(45):34503-14. Epub 2006 Sep 7., [PMID:16959783]
Abstract [show]
The ATP-binding cassette transporter ABCA3 is expressed predominantly at the limiting membrane of the lamellar bodies in lung alveolar type II cells. Recent study has shown that mutation of the ABCA3 gene causes fatal surfactant deficiency in newborns. In this study, we investigated in HEK293 cells the intracellular localization and N-glycosylation of the ABCA3 mutants so far identified in fatal surfactant deficiency patients. Green fluorescent protein-tagged L101P, L982P, L1553P, Q1591P, and Ins1518fs/ter1519 mutant proteins remained localized in the endoplasmic reticulum, and processing of oligosaccharide was impaired, whereas wild-type and N568D, G1221S, and L1580P mutant ABCA3 proteins trafficked to the LAMP3-positive intracellular vesicle, accompanied by processing of oligosaccharide from high mannose type to complex type. Vanadate-induced nucleotide trapping and ATP-binding analyses showed that ATP hydrolysis activity was dramatically decreased in the N568D, G1221S, and L1580P mutants, accompanied by a moderate decrease in ATP binding in N568D and L1580P mutants but not in the G1221S mutant, compared with the wild-type ABCA3 protein. In addition, mutational analyses of the Gly-1221 residue in the 11th transmembrane segment and the Leu-1580 residue in the cytoplasmic tail, and homology modeling of nucleotide binding domain 2 demonstrate the significance of these residues for ATP hydrolysis and suggest a mechanism for impaired ATP hydrolysis in G1221S and L1580P mutants. Thus, surfactant deficiency because of ABCA3 gene mutation may be classified into two categories as follows: abnormal intracellular localization (type I) and normal intracellular localization with decreased ATP binding and/or ATP hydrolysis of the ABCA3 protein (type II). These distinct pathophysiologies may reflect both the severity and effective therapy for surfactant deficiency.
Comments [show]
None has been submitted yet.
No. Sentence Comment
259 Although further confirmation of this interaction might be provided by mutational analysis of Trp-1554, many disease-related mutations at helix 6 and helix 7 of NBDs such as R2106C and E2131K in ABCA4 (44-47), F587I and L610S in ABCC7/CFTR (48-50), and A665T in ABCB3/TAP2 (51) (Fig. 8A) support the importance of these helices for the function of the ABC transporter.
X
ABCA4 p.Glu2131Lys 16959783:259:185
status: NEW257 Although further confirmation of this interaction might be provided by mutational analysis of Trp-1554, many disease-related mutations at helix 6 and helix 7 of NBDs such as R2106C and E2131K in ABCA4 (44-47), F587I and L610S in ABCC7/CFTR (48-50), and A665T in ABCB3/TAP2 (51) (Fig. 8A) support the importance of these helices for the function of the ABC transporter.
X
ABCA4 p.Glu2131Lys 16959783:257:185
status: NEW[hide] Mutational scanning of the ABCR gene with double-g... Hum Genet. 2001 Sep;109(3):326-38. Fumagalli A, Ferrari M, Soriani N, Gessi A, Foglieni B, Martina E, Manitto MP, Brancato R, Dean M, Allikmets R, Cremonesi L
Mutational scanning of the ABCR gene with double-gradient denaturing-gradient gel electrophoresis (DG-DGGE) in Italian Stargardt disease patients.
Hum Genet. 2001 Sep;109(3):326-38., [PMID:11702214]
Abstract [show]
Mutations in the retina-specific ABC transporter (ABCR) gene are responsible for autosomal recessive Stargardt disease (arSTGD). Mutation detection efficiency in ABCR in arSTGD patients ranges between 30% and 66% in previously published studies, because of high allelic heterogeneity and technical limitations of the employed methods. Conditions were developed to screen the ABCR gene by double-gradient denaturing-gradient gel electrophoresis. The efficacy of this method was evaluated by analysis of DNA samples with previously characterized ABCR mutations. This approach was applied to mutation detection in 44 Italian arSTGD patients corresponding to 36 independent genomes, in order to assess the nature and frequency of the ABCR mutations in this ethnic group. In 34 of 36 (94.4%) STGD patients, 37 sequence changes were identified, including 26 missense, six frameshift, three splicing, and two nonsense variations. Among these, 20 had not been previously described. Several polymorphisms were detected in affected individuals and in matched controls. Our findings extend the spectrum of mutations identified in STGD patients and suggest the existence of a subset of molecular defects specific to the Italian population. The identification of at least two disease-associated mutations in four healthy control individuals indicates a higher than expected carrier frequency of variant ABCR alleles in the general population. Genotype-phenotype analysis in our series showed a possible correlation between the nature and location of some mutations and specific ophthalmoscopic features of STGD disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
37 DNA samples (n=22) carrying previously identified mutations in the ABCR gene were employed as controls for evaluating the efficacy of the DG-DGGE approach in detecting sequence variations R572Q (Lewis et al. 1999), Y639X (Lewis et al. 1999), G863A (Lewis et al. 1999; Maugeri et al. 1999), A1038V (Rozet et al. 1998), T1019M (Rozet et al. 1998), 3211insGT (Lewis et al. 1999), P1380L (Lewis et al. 1999), H1406Y (Lewis et al. 1999), 4947delC (Lewis et al. 1999), H1838Y (Lewis et al. 1999), 5714+5G→A (Cremers et al. 1998), N1868I (De La Paz et al. 1999), L1938L (Rivera et al. 2000), G1961E (Allikmets et al. 1997a, 1997b), L1970F (Lewis et al. 1999), L2027F (Nasonkin et al. 1998), V2050L (Lewis et al. 1999), E2131K (Lewis et al. 1999), R2139W (Lewis et al. 1999), 6709insG (Lewis et al. 1999), D2177N (Allikmets et al. 1997a, 1997b), 2181del12 (Lewis et al. 1999).
X
ABCA4 p.Glu2131Lys 11702214:37:719
status: NEW[hide] Genotype/Phenotype analysis of a photoreceptor-spe... Am J Hum Genet. 1999 Feb;64(2):422-34. Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y, Lupski JR, Leppert M, Dean M
Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease.
Am J Hum Genet. 1999 Feb;64(2):422-34., [PMID:9973280]
Abstract [show]
Mutation scanning and direct DNA sequencing of all 50 exons of ABCR were completed for 150 families segregating recessive Stargardt disease (STGD1). ABCR variations were identified in 173 (57%) disease chromosomes, the majority of which represent missense amino acid substitutions. These ABCR variants were not found in 220 unaffected control individuals (440 chromosomes) but do cosegregate with the disease in these families with STGD1, and many occur in conserved functional domains. Missense amino acid substitutions located in the amino terminal one-third of the protein appear to be associated with earlier onset of the disease and may represent misfolding alleles. The two most common mutant alleles, G1961E and A1038V, each identified in 16 of 173 disease chromosomes, composed 18.5% of mutations identified. G1961E has been associated previously, at a statistically significant level in the heterozygous state, with age-related macular degeneration (AMD). Clinical evaluation of these 150 families with STGD1 revealed a high frequency of AMD in first- and second-degree relatives. These findings support the hypothesis that compound heterozygous ABCR mutations are responsible for STGD1 and that some heterozygous ABCR mutations may enhance susceptibility to AMD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
76 2 0071GrA R24H 1 19 2894ArG N965S 3 36 5196ϩ1GrA Splice 2 3 0161GrA C54Y 1 21 3113CrT A1038V 16 5196ϩ2TrC Splice 1 0179CrT A60V 1 22 3211insGT FS 1 37 5281del9 PAL1761del 1 0203CrG P68R 1 3212CrT S1071L 1 38 5459GrC R1820P 1 0223TrG C75G 1 3215TrC V1072A 1 39 5512CrT H1838Y 1 6 0634CrT R212C 1 3259GrA E1087K 1 5527CrT R1843W 1 0664del13 FS 1 3322CrT R1108C 6 40 5585-1GrA Splice 1 0746ArG D249G 1 23 3364GrA E1122K 1 5657GrA G1886E 1 8 1007CrG S336C 1 3385GrT R1129C 1 5693GrA R1898H 4 1018TrG Y340D 1 3386GrT R1129L 2 5714ϩ5GrA Splice 8 11 1411GrA E471K 1 24 3602TrG L1201R 1 42 5882GrA G1961E 16 12 1569TrG D523E 1 25 3610GrA D1204N 1 5898ϩ1GrT Splice 3 1622TrC L541P 1 28 4139CrT P1380L 4 43 5908CrT L1970F 1 1715GrA R572Q 2 4216CrT H1406Y 1 5929GrA G1977S 1 1715GrC R572P 1 4222TrC W1408R 4 6005ϩ1GrT Splice 1 13 1804CrT R602W 1 4232insTATG FS 1 44 6079CrT L2027F 11 1822TrA F608I 2 4253ϩ5GrT Splice 1 6088CrT R2030X 1 1917CrA Y639X 1 29 4297GrA V1433I 1 6089GrA R2030Q 1 1933GrA D645N 1 4316GrA G1439D 2 6112CrT R2038W 1 14 2005delAT FS 1 4319TrC F1440S 1 45 6148GrC V2050L 2 2090GrA W697X 1 4346GrA W1449X 1 6166ArT K2056X 1 2160ϩ1GrC Splice 1 30a 4462TrC C1488R 2 6229CrT R2077W 1 16 2453GrA G818E 1 4457CrT P1486L 1 46 6286GrA E2096K 1 2461TrA W821R 1 30b 4469GrA C1490Y 3 6316CrT R2106C 1 2536GrC D846H 1 4539ϩ1GrT Splice 1 47 6391GrA E2131K 1 2552GrC G851D 1 31 4577CrT T1526M 7 6415CrT R2139W 1 17 2588GrC G863A 11 4594GrA D1532N 3 6445CrT R2149X 1 19 2791GrA V931M 2 35 4947delC FS 1 48 6543del36 1181del12 1 2827CrT R943W 1 36 5041del15 VVAIC1681del 2 6709insG FS 1 2884delC FS 1 5087GrA S1696N 1 NOTE.-FS ϭ frameshift.
X
ABCA4 p.Glu2131Lys 9973280:76:1394
status: NEW101 For the double-mutant chromosomes in the compound heterozygous families (AR31: Y340D and R572Q; AR106: E471K and E2131K; AR128: R572Q and G863A; and AR189: L541P and A1038V) and in those families in which the second disease chromosome was not identified (AR215: H1406Y and V2050L; AR264: D1204N and L2027F; AR254: D249G and R1898H; AR265: G863A and R1898H; AR285: 2714ϩ5GrA and 2884delC; and AR305: G863A and R1898H), in three cases (AR128, AR265, and AR305) each mutation on the double-mutant chromosome had been identified independently as disease causing in other, unrelated families with STGD1 (table 1).
X
ABCA4 p.Glu2131Lys 9973280:101:113
status: NEW77 2 0071GrA R24H 1 19 2894ArG N965S 3 36 5196af9;1GrA Splice 2 3 0161GrA C54Y 1 21 3113CrT A1038V 16 5196af9;2TrC Splice 1 0179CrT A60V 1 22 3211insGT FS 1 37 5281del9 PAL1761del 1 0203CrG P68R 1 3212CrT S1071L 1 38 5459GrC R1820P 1 0223TrG C75G 1 3215TrC V1072A 1 39 5512CrT H1838Y 1 6 0634CrT R212C 1 3259GrA E1087K 1 5527CrT R1843W 1 0664del13 FS 1 3322CrT R1108C 6 40 5585afa;1GrA Splice 1 0746ArG D249G 1 23 3364GrA E1122K 1 5657GrA G1886E 1 8 1007CrG S336C 1 3385GrT R1129C 1 5693GrA R1898H 4 1018TrG Y340D 1 3386GrT R1129L 2 5714af9;5GrA Splice 8 11 1411GrA E471K 1 24 3602TrG L1201R 1 42 5882GrA G1961E 16 12 1569TrG D523E 1 25 3610GrA D1204N 1 5898af9;1GrT Splice 3 1622TrC L541P 1 28 4139CrT P1380L 4 43 5908CrT L1970F 1 1715GrA R572Q 2 4216CrT H1406Y 1 5929GrA G1977S 1 1715GrC R572P 1 4222TrC W1408R 4 6005af9;1GrT Splice 1 13 1804CrT R602W 1 4232insTATG FS 1 44 6079CrT L2027F 11 1822TrA F608I 2 4253af9;5GrT Splice 1 6088CrT R2030X 1 1917CrA Y639X 1 29 4297GrA V1433I 1 6089GrA R2030Q 1 1933GrA D645N 1 4316GrA G1439D 2 6112CrT R2038W 1 14 2005delAT FS 1 4319TrC F1440S 1 45 6148GrC V2050L 2 2090GrA W697X 1 4346GrA W1449X 1 6166ArT K2056X 1 2160af9;1GrC Splice 1 30a 4462TrC C1488R 2 6229CrT R2077W 1 16 2453GrA G818E 1 4457CrT P1486L 1 46 6286GrA E2096K 1 2461TrA W821R 1 30b 4469GrA C1490Y 3 6316CrT R2106C 1 2536GrC D846H 1 4539af9;1GrT Splice 1 47 6391GrA E2131K 1 2552GrC G851D 1 31 4577CrT T1526M 7 6415CrT R2139W 1 17 2588GrC G863A 11 4594GrA D1532N 3 6445CrT R2149X 1 19 2791GrA V931M 2 35 4947delC FS 1 48 6543del36 1181del12 1 2827CrT R943W 1 36 5041del15 VVAIC1681del 2 6709insG FS 1 2884delC FS 1 5087GrA S1696N 1 NOTE.-FS afd; frameshift.
X
ABCA4 p.Glu2131Lys 9973280:77:1400
status: NEW102 For the double-mutant chromosomes in the compound heterozygous families (AR31: Y340D and R572Q; AR106: E471K and E2131K; AR128: R572Q and G863A; and AR189: L541P and A1038V) and in those families in which the second disease chromosome was not identified (AR215: H1406Y and V2050L; AR264: D1204N and L2027F; AR254: D249G and R1898H; AR265: G863A and R1898H; AR285: 2714af9;5GrA and 2884delC; and AR305: G863A and R1898H), in three cases (AR128, AR265, and AR305) each mutation on the double-mutant chromosome had been identified independently as disease causing in other, unrelated families with STGD1 (table 1).
X
ABCA4 p.Glu2131Lys 9973280:102:113
status: NEW[hide] Functional hot spots in human ATP-binding cassette... Protein Sci. 2010 Nov;19(11):2110-21. Kelly L, Fukushima H, Karchin R, Gow JM, Chinn LW, Pieper U, Segal MR, Kroetz DL, Sali A
Functional hot spots in human ATP-binding cassette transporter nucleotide binding domains.
Protein Sci. 2010 Nov;19(11):2110-21., [PMID:20799350]
Abstract [show]
The human ATP-binding cassette (ABC) transporter superfamily consists of 48 integral membrane proteins that couple the action of ATP binding and hydrolysis to the transport of diverse substrates across cellular membranes. Defects in 18 transporters have been implicated in human disease. In hundreds of cases, disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs). The functional impact of the majority of ABC transporter nsSNPs has yet to be experimentally characterized. Here, we combine experimental mutational studies with sequence and structural analysis to describe the impact of nsSNPs in human ABC transporters. First, the disease associations of 39 nsSNPs in 10 transporters were rationalized by identifying two conserved loops and a small alpha-helical region that may be involved in interdomain communication necessary for transport of substrates. Second, an approach to discriminate between disease-associated and neutral nsSNPs was developed and tailored to this superfamily. Finally, the functional impact of 40 unannotated nsSNPs in seven ABC transporters identified in 247 ethnically diverse individuals studied by the Pharmacogenetics of Membrane Transporters consortium was predicted. Three predictions were experimentally tested using human embryonic kidney epithelial (HEK) 293 cells stably transfected with the reference multidrug resistance transporter 4 and its variants to examine functional differences in transport of the antiviral drug, tenofovir. The experimental results confirmed two predictions. Our analysis provides a structural and evolutionary framework for rationalizing and predicting the functional effects of nsSNPs in this clinically important membrane transporter superfamily.
Comments [show]
None has been submitted yet.
No. Sentence Comment
50 Disease-associated nsSNPs at Three Structural Hotspots in Human ABC Transporter NBDs Gene Disease Position ARA motif ABCB11 BRIC2 A570T ABCD1 X-ALD A616V CFTR CF A559T ABCC6 PXE R765Q ABCC8 HHF1 R841G ABCC8 HHF1 R1493Q ABCC8 HHF1 R1493W ABCD1 X-ALD R617C ABCD1 X-ALD R617G ABCD1 X-ALD R617H CFTR CF R560K CFTR CF R560S CFTR CF R560T ABCA1 HDLD1 A1046D ABCB4 ICP A546D C-loop 1 motif ABCC8 HHF1 D1471H ABCC8 HHF1 D1471N CFTR CBAVD G544V ABCC8 HHF1 G1478R C-loop2 motif ABCA4 STGD1 H2128R ABCC8 HHF1 K889T ABCD1 X-ALD R660P ABCD1 X-ALD R660W ABCA1 HDLD2 M1091T ABCA4 STGD1 E2131K ABCA12 LI2 E1539K ABCA4 STGD1 and CORD3 E1122K CFTR CF L610S ABCC8 HHF1 L1543P ABCA1 Colorectal cancer sample; somatic mutation A2109T ABCC9 CMD1O A1513T ABCD1 X-ALD H667D CFTR CF A613T ABCA1 HDLD2 D1099Y ABCD1 X-ALD T668I CFTR CF D614G ABCA4 STGD1 R2139W ABCA4 STGD1 R1129C ABCA4 ARMD2, STGD1, and FFM R1129L Disease abbreviations are as follows: BRIC2, benign recurrent intrahepatic cholestasis type 2; X-ALD, X-linked adrenoleukodystrophy; CF, cystic fibrosis; PXE, Pseudoxanthoma elasticum; HHF1, familial hyperinsulinemic hypoglycemia-1; HDLD1, high density lipoprotein deficiency type 1; ICP, intrahepatic cholestasis of pregnancy; CBAVD, congenital bilateral absence of the vas deferens; STGD1, Stargardt disease type 1; HDLD2, high density lipoprotein deficiency type 2; LI2, ichthyosis lamellar type 2; CORD3, cone-rod dystrophy type 3; CMD1O, cardiomyopathy dilated type 1O; ARMD2, age-related macular degeneration type 2; FFM, fundus flavimaculatus.
X
ABCA4 p.Glu2131Lys 20799350:50:571
status: NEW[hide] Detection rate of pathogenic mutations in ABCA4 us... Arch Ophthalmol. 2012 Nov;130(11):1486-90. doi: 10.1001/archophthalmol.2012.1697. Downes SM, Packham E, Cranston T, Clouston P, Seller A, Nemeth AH
Detection rate of pathogenic mutations in ABCA4 using direct sequencing: clinical and research implications.
Arch Ophthalmol. 2012 Nov;130(11):1486-90. doi: 10.1001/archophthalmol.2012.1697., [PMID:23143460]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
30 In 3 of the 6 patients with a historical diagnosis Table. Results From Direct Sequencing of the ABCA4 Gene in 50 Patients (continued) Subject No. Change 1 Change 2 Phase Segregation Age at Onset, y Phenotype Grade, Macula Flecks/ Cones/Rodsa Additional Variants Conclusion Nucleotide Amino Acid Nucleotide Amino Acid 11 4139Cb0e;T P1380L 5714 af9; 5Gb0e;A Splice NK NK 19 STGD m/0/0 0 2 PVs 12 4457Cb0e;T P1486L 4457Cb0e;T P1486L In trans Unaffected sibling carries 1 mutation 25 STGD maf9;af9;/1/1 0 2 PVs 13 4537dupC Q1513fs 6391Gb0e;A E2131K In trans Unaffected parents carriers 10 STGD maf9;/0/0 R152Q in cis with Q1513fs, E2131K in cis with E471K 2 PVs 14 6079Cb0e;T L2027F 6079Cb0e;T L2027F In trans Unaffected sibling carrier 28 STGD maf9;af9;/0/0 0 2 PVs 15 5018 af9; 2Tb0e;C NA 6316Cb0e;T R2106C In trans Affected sibling with same mutations 17 STGD m/0/1 0 2 PVs 16 3004Cb0e;T R1002Wb 1957Cb0e;T R653C In trans NK 16 STGD m/0/1 0 2 PVs 17 1253Tb0e;C F418S 2588Gb0e;C G863A NK NK 52 STGD maf9;/0/0 0 2 PVs 18 6709Ab0e;C T2237Pb 3064Gb0e;A E1022K In trans 2 Affected siblings with same mutations 6 STGD maf9;af9;/0/0 0 2 PVs 19 5260Tb0e;G Y1754D 4469Gb0e;A C1490Y In trans NK 12 STGD maf9;af9;/0/0 0 2 PVs 20 551Cb0e;T S184Fb 4793Cb0e;A A1598D NK 2 Affected siblings with same mutations 58 STGD m/NP/NP 0 2 PVs 21 550-551TCb0e;CG S184Rb 5882Gb0e;A G1961E In trans Affected sibling with same mutations 25 STGD maf9;af9;/0/0 0 2 PVs 22 5313-3Cb0e;G Spliceb 5882Gb0e;A G1961E In trans Unaffected parents carriers 47 STGD m/0/1 0 2 PVs 23 2588Gb0e;C G863A 5461-10Tb0e;C Disease-associated allele, unknown mechanism In trans NA 26 STGD maf9;af9;/3/1 1 In cis with G863A 2 PVs 24 5537Tb0e;C I1846T 5461-10Tb0e;C Disease-associated allele, unknown mechanism In trans Unaffected son carries I1846T only 17 STGD maf9;af9;/3/3 0 2 PVs 25 6089Gb0e;A R2030Q 5461-10Tb0e;C Disease-associated allele, unknown mechanism In trans Unaffected sibling carries R2030Q 4 STGD m/NP/NP 0 2 PVs 26 6730-1Gb0e;C Spliceb 2588Gb0e;C G863A NK NK 15 STGD NP/NP/NP 0 2 PVs 27 3291Ab0e;T R1097Sb 3056Cb0e;T T1019M In trans NK 9 STGD NP/NP/NP 1 In cis with R1097S 2 PVs 28 498delT L167HisfsX2b Not present NA NA NK 28 STGD m/1/1 0 1 PV 29 2345Gb0e;A W782Xb Not present NA NA Unaffected mother carries mutation 25 STGD m/1/1 0 1 PV 30 2588Gb0e;C G863A 4326Cb0e;A N1442K NK NK 36 STGD maf9;/0/0 0 1 PV af9; N1442K (unlikely) 31 2966Tb0e;C V989A Not present NA NA NK 49 STGD m/1/1 0 1 PV (continued) ARCH OPHTHALMOL/VOL 130 (NO. 11), NOV 2012 WWW.ARCHOPHTHALMOL.COM 1487 (c)2012 American Medical Association. All rights reserved. Downloaded From: http://archopht.jamanetwork.com/ by a Semmelweis University Budapest User on 12/06/2015 lopathy is genetically heterogeneous. A total of 10 novel mutations were identified (Table).
X
ABCA4 p.Glu2131Lys 23143460:30:562
status: NEWX
ABCA4 p.Glu2131Lys 23143460:30:654
status: NEW