ABCA1 p.Ser364Cys
Predicted by SNAP2: | A: N (61%), C: D (59%), D: D (63%), E: D (63%), F: D (75%), G: D (53%), H: D (75%), I: D (66%), K: D (66%), L: D (59%), M: D (63%), N: N (66%), P: D (80%), Q: N (57%), R: D (59%), T: N (72%), V: D (66%), W: D (80%), Y: D (75%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: N, H: D, I: D, K: N, L: D, M: D, N: N, P: D, Q: N, R: D, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Genetic variation in the ABCA1 gene, HDL cholester... Atherosclerosis. 2010 Feb;208(2):305-16. Epub 2009 Jun 11. Frikke-Schmidt R
Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population.
Atherosclerosis. 2010 Feb;208(2):305-16. Epub 2009 Jun 11., [PMID:19596329]
Abstract [show]
Epidemiological studies consistently demonstrate a strong inverse association between low levels of high-density lipoprotein (HDL) cholesterol and increased risk of ischemic heart disease (IHD). This review focuses on whether both rare and common genetic variation in ABCA1 contributes to plasma levels of HDL cholesterol and to risk of IHD in the general population, and further seeks to understand whether low levels of HDL cholesterol per se are causally related to IHD. Studies of the ABCA1 gene demonstrate a general strategy for detecting functional genetic variants, and show that both common and rare ABCA1 variants contribute to levels of HDL cholesterol and risk of IHD in the general population. The association between ABCA1 variants and risk of IHD appears, however, to be independent of plasma levels of HDL cholesterol. With the recent identification of the largest number of individuals heterozygous for loss-of-function mutations in ABCA1 worldwide, population studies suggests that genetically low HDL cholesterol per se does not predict an increased risk of IHD, and thus questions the causality of isolated low levels of HDL cholesterol for the development of IHD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
2338 The remaining non-synonymous mutations (S364C, T774P, and K776N), ranging in frequency from 0.1 to four per 1000, were not associated with low HDL cholesterol levels [65,66].
X
ABCA1 p.Ser364Cys 19596329:2338:40
status: NEW[hide] Association of loss-of-function mutations in the A... JAMA. 2008 Jun 4;299(21):2524-32. Frikke-Schmidt R, Nordestgaard BG, Stene MC, Sethi AA, Remaley AT, Schnohr P, Grande P, Tybjaerg-Hansen A
Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease.
JAMA. 2008 Jun 4;299(21):2524-32., [PMID:18523221]
Abstract [show]
CONTEXT: Low levels of high-density lipoprotein (HDL) cholesterol are inversely related to cardiovascular risk. Whether this is a causal effect is unclear. OBJECTIVE: To determine whether genetically reduced HDL cholesterol due to heterozygosity for 4 loss-of-function mutations in ABCA1 cause increased risk of ischemic heart disease (IHD). DESIGN, SETTING, AND PARTICIPANTS: Three studies of white individuals from Copenhagen, Denmark, were used: the Copenhagen City Heart Study (CCHS), a 31-year prospective general population study (n = 9022; 28 heterozygotes); the Copenhagen General Population Study (CGPS), a cross-sectional general population study (n = 31,241; 76 heterozygotes); and the Copenhagen Ischemic Heart Disease Study (CIHDS), a case-control study (n = 16,623; 44 heterozygotes). End points in all 3 studies were recorded during the period of January 1, 1976, through July 9, 2007. MAIN OUTCOME MEASURES: Levels of HDL cholesterol in the general population, cellular cholesterol efflux, and the association between IHD and HDL cholesterol and genotype. RESULTS: Heterozygotes vs noncarriers for 4 ABCA1 mutations (P1065S, G1216V, N1800H, R2144X) had HDL cholesterol levels of 41 mg/dL (interquartile range, 31-50 mg/dL) vs 58 mg/dL (interquartile range, 46-73 mg/dL), corresponding to a reduction in HDL cholesterol of 17 mg/dL (P < .001). A 17-mg/dL lower HDL cholesterol level in the CCHS was associated with a multifactorially adjusted hazard ratio for IHD of 1.70 (95% confidence interval [CI], 1.57-1.85). However, for IHD in heterozygotes vs noncarriers, the multifactorially adjusted hazard ratio was 0.67 (95% CI, 0.28-1.61; 1741 IHD events) in the CCHS, the multifactorially adjusted odds ratio was 0.82 (95% CI, 0.34-1.96; 2427 IHD events) in the CGPS, and the multifactorially adjusted odds ratio was 0.86 (95% CI, 0.32-2.32; 2498 IHD cases) in the CIHDS. The corresponding odds ratio for IHD in heterozygotes vs noncarriers for the combined studies (n = 41,961; 6666 cases; 109 heterozygotes) was 0.93 (95% CI, 0.53-1.62). CONCLUSION: Lower plasma levels of HDL cholesterol due to heterozygosity for loss-of-function mutations in ABCA1 were not associated with an increased risk of IHD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
26 The 9022 individuals were genotyped for all non-synonymous mutations (S364C, T774P, K776N, P1065S, G1216V, N1800H, R2144X [http://www.hgmd.cf.ac.uk/ac /index.php; http://www.mutdb.org]), which were previously identified by resequencing the promoter, coding region,andconsensussplicesitesofABCA1 in 190 individuals of Danish ancestry with high and low HDL cholesterol levels.13 All end points and data collection were recorded in the follow-up period of January 1, 1976, through July 9, 2007.
X
ABCA1 p.Ser364Cys 18523221:26:70
status: NEW70 reductions in levels of HDL cholesterol in plasma in heterozygotes vs noncarriers in the CCHS as well as in the CGPS, while 3 were not (S364C, T774P, K776N).
X
ABCA1 p.Ser364Cys 18523221:70:136
status: NEW25 The 9022 individuals were genotyped for all nonsynonymous mutations (S364C, T774P, K776N, P1065S, G1216V, N1800H, R2144X [http://www.hgmd.cf.ac.uk/ac /index.php; http://www.mutdb.org]), which were previously identified by resequencing the promoter, coding region,andconsensussplicesitesofABCA1 in 190 individuals of Danish ancestry with high and low HDL cholesterol levels.13 All end points and data collection were recorded in the follow-up period of January 1, 1976, through July 9, 2007.
X
ABCA1 p.Ser364Cys 18523221:25:69
status: NEW54 LOSS-OF-FUNCTION MUTATIONS IN THE ABCA1 GENE AND RISK OF ISCHEMIC HEART DISEASE 2528 reductions in levels of HDL cholesterol in plasma in heterozygotes vs noncarriers in the CCHS as well as in the CGPS, while were not (S364C, T774P, K776N).
X
ABCA1 p.Ser364Cys 18523221:54:221
status: NEW[hide] Variations on a gene: rare and common variants in ... Annu Rev Nutr. 2006;26:105-29. Brunham LR, Singaraja RR, Hayden MR
Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis.
Annu Rev Nutr. 2006;26:105-29., [PMID:16704350]
Abstract [show]
Cholesterol and its metabolites play a variety of essential roles in living systems. Virtually all animal cells require cholesterol, which they acquire through synthesis or uptake, but only the liver can degrade cholesterol. The ABCA1 gene product regulates the rate-controlling step in the removal of cellular cholesterol: the efflux of cellular cholesterol and phospholipids to an apolipoprotein acceptor. Mutations in ABCA1, as seen in Tangier disease, result in accumulation of cellular cholesterol, reduced plasma high-density lipoprotein cholesterol, and increased risk for coronary artery disease. To date, more than 100 coding variants have been identified in ABCA1, and these variants result in a broad spectrum of biochemical and clinical phenotypes. Here we review genetic variation in ABCA1 and its critical role in cholesterol metabolism and atherosclerosis in the general population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
555 Since a complete loss of function allele would be expected to result in a 50% reduction in HDL levels, a greater than 50% reduction in HDL is most likely explained by a dominant negative allele, in which TABLE 3 Patient phenotypes associated with heterozygous ABCA1 mutations Mutation HDL (mmol/L) HDL (% of control) Number of patients M1091T 0.48 ± 0.5 30 ± 30 4 G1216V 0.50 40 1 R2144X 0.56 ± 0.2 41 ± 18 12 R282X 0.52 41 1 R909X 0.59 ± 0.3 42 ± 19 5 K776N 0.55 ± 0.1 47 ± 5 2 R587W 0.61 ± 0.1 47 ± 8 7 S364C 0.60 48 1 P1065S 0.80 51 1 c-ter deletion 0.75 53 1 N1800H - 56.5 33 P85L 0.72 ± 0.4 57 ± 33 5 Del693L 0.79 ± 0.2 57 ± 15 8 D1289N 0.80 ± 0.1 59 ± 12 4 R2081W 0.80 ± 0.1 59 ± 12 4 2203X 0.80 ± 0.2 59 ± 20 4 DelED1893,4 0.77 ± 0.2 59 ± 18 8 2145X 0.82 ± 0.1 59 ± 9 4 A1046D 0.70 ± 0.1 60 ± 8 2 Q597R 0.82 ± 0.1 60 ± 5 5 C1477R 0.82 ± 0.2 61 ± 15 9 IVS25 + 1G > C 0.78 ± 0.1 62 ± 12 4 D1099Y 0.83 ± 0.3 63 ± 21 5 1552X 1.00 64 1 F2009S 0.82 ± 0.2 64 ± 19 6 R587W 0.86 ± 0.1 65 ± 17 2 R1068H 0.90 ± 0.3 67 ± 26 9 N935S 1.00 ± 0.3 74 ± 16 7 T929I 1.01 ± 0.2 76 ± 7 8 1284X 1.11 ± 0.2 83 ± 14 5 A937V 1.15 ± 0.6 85 ± 28 2 R1680W 1.22 ± 0.2 87 ± 17 3 635X 1.24 ± 0.5 90 ± 32 7 W590S 1.32 ± 0.6 103 ± 46 15 the mutant protein actually interferes with the activity of the remaining wild-type protein.
X
ABCA1 p.Ser364Cys 16704350:555:558
status: NEW