ABCD1 p.Gln307*
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Decreased expression of ABCD4 and BG1 genes early ... Hum Mol Genet. 2005 May 15;14(10):1293-303. Epub 2005 Mar 30. Asheuer M, Bieche I, Laurendeau I, Moser A, Hainque B, Vidaud M, Aubourg P
Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy.
Hum Mol Genet. 2005 May 15;14(10):1293-303. Epub 2005 Mar 30., [PMID:15800013]
Abstract [show]
Childhood cerebral adrenoleukodystrophy (CCER), adrenomyeloneuropathy (AMN) and AMN with cerebral demyelination (AMN-C) are the main phenotypic variants of X-linked adrenoleukodystrophy (ALD). It is caused by mutations in the ABCD1 gene encoding a half-size peroxisomal transporter that has to dimerize to become functional. The biochemical hallmark of ALD is the accumulation of very-long-chain fatty acids (VLCFA) in plasma and tissues. However, there is no correlation between the ALD phenotype and the ABCD1 gene mutations or the accumulation of VLCFA in plasma and fibroblast from ALD patients. The absence of genotype-phenotype correlation suggests the existence of modifier genes. To elucidate the mechanisms underlying the phenotypic variability of ALD, we studied the expression of ABCD1, three other peroxisomal transporter genes of the same family (ABCD2, ABCD3 and ABCD4) and two VLCFA synthetase genes (VLCS and BG1) involved in VLCFA metabolism, as well as the VLCFA concentrations in the normal white matter (WM) from ALD patients with CCER, AMN-C and AMN phenotypes. This study shows that: (1) ABCD1 gene mutations leading to truncated ALD protein are unlikely to cause variation in the ALD phenotype; (2) accumulation of saturated VLCFA in normal-appearing WM correlates with ALD phenotype and (3) expression of the ABCD4 and BG1, but not of the ABCD2, ABCD3 and VLCS genes, tends to be correlated with the severity of the disease, acting early in the pathogenesis of ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
76 Mutation Amino acid alteration Type of mutation at the protein level Tissue sample CCER1 521A.G Y174C Missense CCER2 1414insC fsE471 Frame shift CCER3 Unknown Unknown Unknown Fibroblast CCER4 411G.A W137X Nonsense CCER5 1961T.C L654P Missense CCER6 529C.T Q177X Nonsense CCER7 901-1G.A fsE300 Frame shift CCER8 796G.A G266R Missense CCER9 1822G.A G608S Missense Brain CCER10 1390C.A R464X Nonsense CCER11 253-254insC fsP84 Frame shift CCER12 619_627del S207_A209del Deletion AMN-C1 1414-1415insC fsE471 Frame shift AMN-C2 1661G.A R554H Missense AMN-C3 1585delG fsG528 Frame shift Fibroblast AMN-C4 1661G.A R554H Missense AMN-C5 1825G.A E609K Missense AMN-C6 919C.T Q307X Nonsense AMN-C7 1850G.A R617H Missense AMN-C8 887A.G Y296C Missense AMN-C9 965T.C L322P Missense Brain AMN-C10 1390C.T R464X Nonsense AMN-C11 [1165C.T;1224 þ 1GT.TG] [R389C;fSE408] Missense; frame shift AMN-C12 1661G.A R554H Missense AMN-C13 [1997A.C;2007C.G] [Y666S;H669Q] Missense AMN-C14 1755delG fsH586 Frame shift AMN1 529C.T Q177X Nonsense AMN2 1999C.G H667D Missense AMN3 1415delAG fsE471 Frame shift Fibroblast AMN4 337delC fsA112 Frame shift AMN5 310C.T R104C Missense AMN6 919C.T Q307X Nonsense AMN7 323C.T S108L Missense Brain All mutation designations conform to the nomenclature described by Antonarakis and den Dunnen (30,31).
X
ABCD1 p.Gln307* 15800013:76:665
status: NEWX
ABCD1 p.Gln307* 15800013:76:1165
status: NEW[hide] Glutathione imbalance in patients with X-linked ad... Mol Genet Metab. 2013 Aug;109(4):366-70. doi: 10.1016/j.ymgme.2013.05.009. Epub 2013 May 22. Petrillo S, Piemonte F, Pastore A, Tozzi G, Aiello C, Pujol A, Cappa M, Bertini E
Glutathione imbalance in patients with X-linked adrenoleukodystrophy.
Mol Genet Metab. 2013 Aug;109(4):366-70. doi: 10.1016/j.ymgme.2013.05.009. Epub 2013 May 22., [PMID:23768953]
Abstract [show]
BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder of X-linked inheritance caused by a mutation in the ABCD1 gene which determines an accumulation of long-chain fatty acids in plasma and tissues. Recent evidence shows that oxidative stress may be a hallmark in the pathogenesis of X-ALD and glutathione plays an important role in the defense against free radicals. In this study we have analyzed glutathione homeostasis in lymphocytes of 14 patients with X-ALD and evaluated the balance between oxidized and reduced forms of glutathione, in order to define the role of this crucial redox marker in this condition. METHODS: Lymphocytes, plasma and erythrocytes were obtained from the whole blood of 14 subjects with X-ALD and in 30 healthy subjects. Total, reduced and protein-bound glutathione levels were measured in lymphocytes by HPLC analysis. Erythrocyte free glutathione and antioxidant enzyme activities, plasma thiols and carbonyl content were determined by spectrophotometric assays. RESULTS: A significant decrease of total and reduced glutathione was found in lymphocytes of patients, associated to high levels of all oxidized glutathione forms. A decline of free glutathione was particularly significant in erythrocytes. The increased oxidative stress in X-ALD was additionally confirmed by the decrease of plasma thiols and the high level of carbonyls. CONCLUSION: Our results strongly support a role for oxidative stress in the pathophysiology of X-ALD and strengthen the importance of the balance among glutathione forms as a hallmark and a potential biomarker of the disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 Subject Age (years) Phenotype Mutation HAAM 4 CCALD c.1415_1416delAG (p.Q472RfsX83) AM 24 CCALD c.919C>T (p.Q307X) SM 16 CCALD c.1888G>A (p.E630K) ON 11 CCALD c.1628C>T (p.P543L) MG 62 AMN c.2006A>G (p.H669R) AG 33 AMN c.427C>T (p.P143S) BM 64 AMN c.1382delT (p.L461RfsX97) PF 54 AMN c.1252C>T (p.R418W) RN 61 AMN c.1415_1416delAG (p.Q472RfsX83) ME 20 AMN c.442_444 del 3(AAC)/ins6 (TGTTGA) (p.N148CfsX1) SF 40 AMN c.442_444 del 3(AAC)/ins6 (TGTTGA) (p.N148CfsX1) LM 54 AMN c.1540A>C (p.S514R) LF 43 AMN c.1415_1416delAG (p.Q472RfsX83) LM 40 AMN c.1415_1416delAG (p.Q472RfsX83) 2.5.
X
ABCD1 p.Gln307* 23768953:74:108
status: NEW