ABCD1 p.Asp629His
Predicted by SNAP2: | A: D (95%), C: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Functional characterization of the adrenoleukodyst... Endocr Res. 2002 Nov;28(4):741-8. Gartner J, Dehmel T, Klusmann A, Roerig P
Functional characterization of the adrenoleukodystrophy protein (ALDP) and disease pathogenesis.
Endocr Res. 2002 Nov;28(4):741-8., [PMID:12530690]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder characterized by abnormal accumulation of saturated very long chain fatty acids in tissues and body fluids with predominance in brain white matter and adrenal cortex. The clinical phenotype is highly variable ranging from the severe childhood cerebral form to asymptomatic persons. The responsible ALD gene encodes the adrenoleukodystrophy protein (ALDP), a peroxisomal integral membrane protein that is a member of the ATP-binding cassette (ABC) transporter protein family. The patient gene mutations are heterogeneously distributed over the functional domains of ALDP. The extreme variability in clinical phenotype, even within one affected family, indicates that besides the ALD gene mutations other factors strongly influence the clinical phenotype. To understand the cell biology and function of mammalian peroxisomal ABC transporters and to determine their role in the pathogenesis of X-ALD we developed a system for expressing functional ABC protein domains in fusion with the maltose binding protein. Wild type and mutant fusion proteins of the nucleotide-binding fold were overexpressed, purified, and characterized by photoaffinity labeling with 8-azido ATP or 8-azido GTP and a coupled ATP regenerating enzyme assay for ATPase activity. Our studies provide evidence that peroxisomal ABC transporters utilize ATP to become a functional transporter and that ALD gene mutations alter peroxisomal transport function. The established disease model will be used further to study the influence of possible disease modifier proteins on ALDP function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
41 The mutant constructs included missense mutations of patients with X-ALD in the nucleotide binding fold regions Walker A and 19mer (ALDP-NBF-G512S, ALDP-NBF-Q544R, ALDP-NBF-P560L, ALDP-NBF-R591Q, ALDP-NBF-S606L, and ALDP-NBF-D629H) and corresponding mutations in another ABC transporter in the peroxisome membrane, the 70 kDa peroxisomal membrane protein (PMP70; PMP70-NBF-G478R, PMP70- NBF-S572I).
X
ABCD1 p.Asp629His 12530690:41:225
status: NEW[hide] Altered expression of ALDP in X-linked adrenoleuko... Am J Hum Genet. 1995 Aug;57(2):292-301. Watkins PA, Gould SJ, Smith MA, Braiterman LT, Wei HM, Kok F, Moser AB, Moser HW, Smith KD
Altered expression of ALDP in X-linked adrenoleukodystrophy.
Am J Hum Genet. 1995 Aug;57(2):292-301., [PMID:7668254]
Abstract [show]
X-linked adrenoleukodystrophy (ALD) is a neurodegenerative disorder with variable phenotypic expression that is characterized by elevated plasma and tissue levels of very long-chain fatty acids. However, the product of the gene defective in ALD (ALDP) is a membrane transporter of the ATP-binding cassette family of proteins and is not related to enzymes known to activate or oxidize fatty acids. We generated an antibody that specifically recognizes the C-terminal 18 amino acids of ALDP and can detect ALDP by indirect immunofluorescence. To better understand the mechanism by which mutations in ALDP lead to disease, we used this antibody to examine the subcellular distribution and relative abundance of ALDP in skin fibroblasts from normal individuals and ALD patients. Punctate immunoreactive material typical of fibroblast peroxisomes was observed in cells from seven normal controls and eight non-ALD patients. Of 35 ALD patients tested, 17 had the childhood-onset cerebral form of the disease, 13 had the milder adult phenotype adrenomyeloneuropathy, 3 had adrenal insufficiency only, and 2 were affected fetuses. More than two-thirds (69%) of all patients studied showed no punctate immunoreactive material. There was no correlation between the immunofluorescence pattern and clinical phenotype. We determined the mutation in the ALD gene in 15 of these patients. Patients with either a deletion or frameshift mutation lacked ALDP immunoreactivity, as expected. Four of 11 patients with missense mutations were also immunonegative, indicating that these mutations affected the stability or localization of ALDP. In the seven immunopositive patients with missense mutations, correlation of the location and nature of the amino acid substitution may provide new insights into the function of this peroxisomal membrane protein. Furthermore, the study of female relatives of immunonegative ALD probands may aid in the assessment of heterozygote status.
Comments [show]
None has been submitted yet.
No. Sentence Comment
176 In 11 patients, missense mutations that occurred throughout the protein were found: within the transmembrane domains (patients 1, 3, and 4), within the ATP-binding domain (patients 8-12), and on either side of the ATP-binding Table 3 Mutational Analysis of the ALD Gene in IS Unrelated Patients ALDP Patient Phenotype Mutation Consequence Immunoreactivity 1 .................. CALD 825 A-GG K276E + 2.................. AMN 870-2AGAGE291,& 3 .................. CALD 872 G-C E291D 4 .................. AMN 1023 T-IC S342P+ 5 .................. AMN 1166 G-C R389H + 6 .................. CALD 1201 G-AA R401Q + 7 ........ CALD 1415-6 AAG FS@472 8 ........ AMN 1771 G-AA R591Q + 9 ........ Addison 1817 C-T S606L + 10 ................ AMN 1850 G-AA R617H 11 ................ CALD 1876 G-AA A626T 12 ................ Fetus 1884 G-C D629H + 13 ................ CALD 1932 C-UT Q645X 14 ................ AMN 1978 C-OT R660W 15 ........ AMN AExon7-10 Null Mutations in the ALD gene were determined, as described in Methods, in 15 of the ALD patients reported in table 2.
X
ABCD1 p.Asp629His 7668254:176:829
status: NEW178 In 11 patients, missense mutations that occurred throughout the protein were found: within the transmembrane domains (patients 1, 3, and 4), within the ATP-binding domain (patients 8-12), and on either side of the ATP-binding Table 3 Mutational Analysis of the ALD Gene in IS Unrelated Patients ALDP Patient Phenotype Mutation Consequence Immunoreactivity 1 .................. CALD 825 A-GG K276E + 2 .................. AMN 870-2 AGAG E291,& 3 .................. CALD 872 G-C E291D 4 .................. AMN 1023 T-IC S342P + 5 .................. AMN 1166 G-C R389H + 6 .................. CALD 1201 G-AA R401Q + 7 ........ CALD 1415-6 AAG FS@472 8 ........ AMN 1771 G-AA R591Q + 9 ........ Addison 1817 C-T S606L + 10 ................ AMN 1850 G-AA R617H 11 ................ CALD 1876 G-AA A626T 12 ................ Fetus 1884 G-C D629H + 13 ................ CALD 1932 C-UT Q645X 14 ................ AMN 1978 C-OT R660W 15 ........ AMN AExon7-10 Null Mutations in the ALD gene were determined, as described in Methods, in 15 of the ALD patients reported in table 2.
X
ABCD1 p.Asp629His 7668254:178:833
status: NEW