ABCD1 p.Leu654Pro
Predicted by SNAP2: | A: D (85%), C: D (66%), D: D (95%), E: D (95%), F: D (85%), G: D (95%), H: D (95%), I: D (80%), K: D (95%), M: D (75%), N: D (95%), P: D (95%), Q: D (91%), R: D (95%), S: D (91%), T: D (91%), V: D (75%), W: D (95%), Y: D (91%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: N, K: D, M: N, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] ABCD1 mutations and the X-linked adrenoleukodystro... Hum Mutat. 2001 Dec;18(6):499-515. Kemp S, Pujol A, Waterham HR, van Geel BM, Boehm CD, Raymond GV, Cutting GR, Wanders RJ, Moser HW
ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations.
Hum Mutat. 2001 Dec;18(6):499-515., [PMID:11748843]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC half-transporter (ALDP) involved in the import of very long-chain fatty acids (VLCFA) into the peroxisome. The disease is characterized by a striking and unpredictable variation in phenotypic expression. Phenotypes include the rapidly progressive childhood cerebral form (CCALD), the milder adult form, adrenomyeloneuropathy (AMN), and variants without neurologic involvement. There is no apparent correlation between genotype and phenotype. In males, unambiguous diagnosis can be achieved by demonstration of elevated levels of VLCFA in plasma. In 15 to 20% of obligate heterozygotes, however, test results are false-negative. Therefore, mutation analysis is the only reliable method for the identification of heterozygotes. Since most X-ALD kindreds have a unique mutation, a great number of mutations have been identified in the ABCD1 gene in the last seven years. In order to catalog and facilitate the analysis of these mutations, we have established a mutation database for X-ALD ( http://www.x-ald.nl). In this review we report a detailed analysis of all 406 X-ALD mutations currently included in the database. Also, we present 47 novel mutations. In addition, we review the various X-ALD phenotypes, the different diagnostic tools, and the need for extended family screening for the identification of new patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
174 P560S 7 1678C>T n.d. # P560L 7 1679C>T Reduced P560L 7 1679C>T Reduced fs I588 7 1765delC n.d. # R591P 7 1772G>C Absent S606L 8 1817C>T Present E609K 8 1825G>A Absent E609K 8 1825G>A Absent R617C 8 1849C>T Absent R617H 8 1850G>A Absent R617H 8 1850G>A Absent A626T 9 1876G>A Absent A626T 9 1876G>A Absent A626D 9 1877C>A n.d. # E630G 9 1889A>G n.d. # C631Y 9 1892G>A n.d. # T632I 9 1895C>T n.d. # V635M 9 1903G>A n.d. # L654P 9 1961T>C Absent # R660W 9 1978C>T Absent fs L663 9 1988insT n.d. # fs L663 IVS 9 IVS9+1g>a n.d. # fs L663 IVS 9 IVS9-1g>a n.d. # H667D 10 1999C>G Absent # T668I 10 2003C>T Absent # T693M 10 2078C>T Present # exon1-5del 1-5 n.d. # The 47 mutations marked with a # are novel unique mutations reported for the first time in this paper.
X
ABCD1 p.Leu654Pro 11748843:174:420
status: NEW[hide] Conservation of targeting but divergence in functi... Biochem J. 2011 Jun 15;436(3):547-57. Zhang X, De Marcos Lousa C, Schutte-Lensink N, Ofman R, Wanders RJ, Baldwin SA, Baker A, Kemp S, Theodoulou FL
Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression.
Biochem J. 2011 Jun 15;436(3):547-57., [PMID:21476988]
Abstract [show]
ABC (ATP-binding cassette) subfamily D transporters are found in all eukaryotic kingdoms and are known to play essential roles in mammals and plants; however, their number, organization and physiological contexts differ. Via cross-kingdom expression experiments, we have explored the conservation of targeting, protein stability and function between mammalian and plant ABCD transporters. When expressed in tobacco epidermal cells, the mammalian ABCD proteins ALDP (adrenoleukodystrophy protein), ALDR (adrenoleukodystrophy-related protein) and PMP70 (70 kDa peroxisomal membrane protein) targeted faithfully to peroxisomes and P70R (PMP70-related protein) targeted to the ER (endoplasmic reticulum), as in the native host. The Arabidopsis thaliana peroxin AtPex19_1 interacted with human peroxisomal ABC transporters both in vivo and in vitro, providing an explanation for the fidelity of targeting. The fate of X-linked adrenoleukodystrophy disease-related mutants differed between fibroblasts and plant cells. In fibroblasts, levels of ALDP in some 'protein-absent' mutants were increased by low-temperature culture, in some cases restoring function. In contrast, all mutant ALDP proteins examined were stable and correctly targeted in plant cells, regardless of their fate in fibroblasts. ALDR complemented the seed germination defect of the Arabidopsis cts-1 mutant which lacks the peroxisomal ABCD transporter CTS (Comatose), but neither ALDR nor ALDP was able to rescue the defect in fatty acid beta-oxidation in establishing seedlings. Taken together, our results indicate that the mechanism for trafficking of peroxisomal membrane proteins is shared between plants and mammals, but suggest differences in the sensing and turnover of mutant ABC transporter proteins and differences in substrate specificity and/or function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
153 Approximately 60% of X-ALD ABCD1 mutations are missense mutations, 65% of which result in no detectable ALDP, based on IF (immunofluorescence), indicating that they affect protein Table 1 Quantification of ALDP levels in X-ALD fibroblasts ALDP Mutation IF Immunoblot (% of control) p.Arg74Trp Absent 7.5 + - 0.6 p.Arg104Cys Reduced 35 + - 3.0 p.Ser149Asn Present 77 + - 3.0 p.Asp194His Present 60 + - 13.6 p.Leu220Pro Reduced 21.8 + - 5.4 p.Arg389His Present 40.6 + - 3.6 p.Arg554His Absent 1.0 + - 0.5 p.Ser606Leu Present 25 + - 1.5 p.Glu609Gly Absent 2.1 + - 1.3 p.Glu609Lys Absent 1.8 + - 0.9 p.Ala616Thr Absent 4.3 + - 1.7 p.Leu654Pro Absent 1.5 + - 1.3 p.Arg660Trp Absent 1.6 + - 0.8 p.His667Asp Absent 2.9 + - 1.0 p.Arg113fs Absent - Figure 3 Interaction of mammalian ABCD proteins with Arabidopsis Pex19 in vivo Tobacco plants stably expressing CFP-SKL were co-transfected with 35S::ABCD-YFP fusions andNLS-Pex19constructs.Leafepidermalcellswereimagedusingconfocalmicroscopy:(A-D) ALDP-YFP plus NLS-HsPex19; (E-H) ALDP-YFP plus NLS-AtPex19_1; (I-L) ALDR-YFP plus NLS-AtPex19_1.
X
ABCD1 p.Leu654Pro 21476988:153:629
status: NEW169 Results are means + - S.D.; n = 3. significantly in response to low temperature in ten wild-type control lines tested (see Supplementary Figure S3A at http://www.BiochemJ.org/bj/436/bj4360547add.htm); however, increased expression levels of ALDP were found in several of the X-ALD fibroblasts investigated: p.Arg74Cys, p.Arg104Cys, p.Arg554His, p.Glu609Gly, p.Ala616Thr, p.Leu654Pro and p.Arg660Trp (Figures 4A and 4B).
X
ABCD1 p.Leu654Pro 21476988:169:373
status: NEW154 Approximately 60% of X-ALD ABCD1 mutations are missense mutations, 65% of which result in no detectable ALDP, based on IF (immunofluorescence), indicating that they affect protein Table 1 Quantification of ALDP levels in X-ALD fibroblasts ALDP Mutation IF Immunoblot (% of control) p.Arg74Trp Absent 7.5 + - 0.6 p.Arg104Cys Reduced 35 + - 3.0 p.Ser149Asn Present 77 + - 3.0 p.Asp194His Present 60 + - 13.6 p.Leu220Pro Reduced 21.8 + - 5.4 p.Arg389His Present 40.6 + - 3.6 p.Arg554His Absent 1.0 + - 0.5 p.Ser606Leu Present 25 + - 1.5 p.Glu609Gly Absent 2.1 + - 1.3 p.Glu609Lys Absent 1.8 + - 0.9 p.Ala616Thr Absent 4.3 + - 1.7 p.Leu654Pro Absent 1.5 + - 1.3 p.Arg660Trp Absent 1.6 + - 0.8 p.His667Asp Absent 2.9 + - 1.0 p.Arg113fs Absent - Figure 3 Interaction of mammalian ABCD proteins with Arabidopsis Pex19 in vivo Tobacco plants stably expressing CFP-SKL were co-transfected with 35S::ABCD-YFP fusions andNLS-Pex19constructs.Leafepidermalcellswereimagedusingconfocalmicroscopy:(A-D) ALDP-YFP plus NLS-HsPex19; (E-H) ALDP-YFP plus NLS-AtPex19_1; (I-L) ALDR-YFP plus NLS-AtPex19_1.
X
ABCD1 p.Leu654Pro 21476988:154:629
status: NEW170 Results are means + - S.D.; n = 3. significantly in response to low temperature in ten wild-type control lines tested (see Supplementary Figure S3A at http://www.BiochemJ.org/bj/436/bj4360547add.htm); however, increased expression levels of ALDP were found in several of the X-ALD fibroblasts investigated: p.Arg74Cys, p.Arg104Cys, p.Arg554His, p.Glu609Gly, p.Ala616Thr, p.Leu654Pro and p.Arg660Trp (Figures 4A and 4B).
X
ABCD1 p.Leu654Pro 21476988:170:373
status: NEW[hide] Decreased expression of ABCD4 and BG1 genes early ... Hum Mol Genet. 2005 May 15;14(10):1293-303. Epub 2005 Mar 30. Asheuer M, Bieche I, Laurendeau I, Moser A, Hainque B, Vidaud M, Aubourg P
Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy.
Hum Mol Genet. 2005 May 15;14(10):1293-303. Epub 2005 Mar 30., [PMID:15800013]
Abstract [show]
Childhood cerebral adrenoleukodystrophy (CCER), adrenomyeloneuropathy (AMN) and AMN with cerebral demyelination (AMN-C) are the main phenotypic variants of X-linked adrenoleukodystrophy (ALD). It is caused by mutations in the ABCD1 gene encoding a half-size peroxisomal transporter that has to dimerize to become functional. The biochemical hallmark of ALD is the accumulation of very-long-chain fatty acids (VLCFA) in plasma and tissues. However, there is no correlation between the ALD phenotype and the ABCD1 gene mutations or the accumulation of VLCFA in plasma and fibroblast from ALD patients. The absence of genotype-phenotype correlation suggests the existence of modifier genes. To elucidate the mechanisms underlying the phenotypic variability of ALD, we studied the expression of ABCD1, three other peroxisomal transporter genes of the same family (ABCD2, ABCD3 and ABCD4) and two VLCFA synthetase genes (VLCS and BG1) involved in VLCFA metabolism, as well as the VLCFA concentrations in the normal white matter (WM) from ALD patients with CCER, AMN-C and AMN phenotypes. This study shows that: (1) ABCD1 gene mutations leading to truncated ALD protein are unlikely to cause variation in the ALD phenotype; (2) accumulation of saturated VLCFA in normal-appearing WM correlates with ALD phenotype and (3) expression of the ABCD4 and BG1, but not of the ABCD2, ABCD3 and VLCS genes, tends to be correlated with the severity of the disease, acting early in the pathogenesis of ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
76 Mutation Amino acid alteration Type of mutation at the protein level Tissue sample CCER1 521A.G Y174C Missense CCER2 1414insC fsE471 Frame shift CCER3 Unknown Unknown Unknown Fibroblast CCER4 411G.A W137X Nonsense CCER5 1961T.C L654P Missense CCER6 529C.T Q177X Nonsense CCER7 901-1G.A fsE300 Frame shift CCER8 796G.A G266R Missense CCER9 1822G.A G608S Missense Brain CCER10 1390C.A R464X Nonsense CCER11 253-254insC fsP84 Frame shift CCER12 619_627del S207_A209del Deletion AMN-C1 1414-1415insC fsE471 Frame shift AMN-C2 1661G.A R554H Missense AMN-C3 1585delG fsG528 Frame shift Fibroblast AMN-C4 1661G.A R554H Missense AMN-C5 1825G.A E609K Missense AMN-C6 919C.T Q307X Nonsense AMN-C7 1850G.A R617H Missense AMN-C8 887A.G Y296C Missense AMN-C9 965T.C L322P Missense Brain AMN-C10 1390C.T R464X Nonsense AMN-C11 [1165C.T;1224 þ 1GT.TG] [R389C;fSE408] Missense; frame shift AMN-C12 1661G.A R554H Missense AMN-C13 [1997A.C;2007C.G] [Y666S;H669Q] Missense AMN-C14 1755delG fsH586 Frame shift AMN1 529C.T Q177X Nonsense AMN2 1999C.G H667D Missense AMN3 1415delAG fsE471 Frame shift Fibroblast AMN4 337delC fsA112 Frame shift AMN5 310C.T R104C Missense AMN6 919C.T Q307X Nonsense AMN7 323C.T S108L Missense Brain All mutation designations conform to the nomenclature described by Antonarakis and den Dunnen (30,31).
X
ABCD1 p.Leu654Pro 15800013:76:228
status: NEW[hide] X-linked adrenoleukodystrophy in women: a cross-se... Brain. 2014 Mar;137(Pt 3):693-706. doi: 10.1093/brain/awt361. Epub 2014 Jan 29. Engelen M, Barbier M, Dijkstra IM, Schur R, de Bie RM, Verhamme C, Dijkgraaf MG, Aubourg PA, Wanders RJ, van Geel BM, de Visser M, Poll-The BT, Kemp S
X-linked adrenoleukodystrophy in women: a cross-sectional cohort study.
Brain. 2014 Mar;137(Pt 3):693-706. doi: 10.1093/brain/awt361. Epub 2014 Jan 29., [PMID:24480483]
Abstract [show]
X-linked adrenoleukodystrophy is the most common peroxisomal disorder. The disease is caused by mutations in the ABCD1 gene that encodes the peroxisomal transporter of very long-chain fatty acids. A defect in the ABCD1 protein results in elevated levels of very long-chain fatty acids in plasma and tissues. The clinical spectrum in males with X-linked adrenoleukodystrophy has been well described and ranges from isolated adrenocortical insufficiency and slowly progressive myelopathy to devastating cerebral demyelination. As in many X-linked diseases, it was assumed that female carriers remain asymptomatic and only a few studies addressed the phenotype of X-linked adrenoleukodystrophy carriers. These studies, however, provided no information on the prevalence of neurological symptoms in the entire population of X-linked adrenoleukodystrophy carriers, since data were acquired in small groups and may be biased towards women with symptoms. Our primary goal was to investigate the symptoms and their frequency in X-linked adrenoleukodystrophy carriers. The secondary goal was to determine if the X-inactivation pattern of the ABCD1 gene was associated with symptomatic status. We included 46 X-linked adrenoleukodystrophy carriers in a prospective cross-sectional cohort study. Our data show that X-linked adrenoleukodystrophy carriers develop signs and symptoms of myelopathy (29/46, 63%) and/or peripheral neuropathy (26/46, 57%). Especially striking was the occurrence of faecal incontinence (13/46, 28%). The frequency of symptomatic women increased sharply with age (from 18% in women <40 years to 88% in women >60 years of age). Virtually all (44/45, 98%) X-linked adrenoleukodystrophy carriers had increased very long-chain fatty acids in plasma and/or fibroblasts, and/or decreased very long-chain fatty acids beta-oxidation in fibroblasts. We did not find an association between the X-inactivation pattern and symptomatic status. We conclude that X-linked adrenoleukodystrophy carriers develop an adrenomyeloneuropathy-like phenotype and there is a strong association between symptomatic status and age. X-linked adrenoleukodystrophy should be considered in the differential diagnosis in women with chronic myelopathy and/or peripheral neuropathy (especially with early faecal incontinence). ABCD1 mutation analysis deserves a place in diagnostic protocols for chronic non-compressive myelopathy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
141 Table 1 Summary of symptoms and signs of all the female participating in the study Family Age (years) Urinary incontinence Faecal incontinence Gait disorder Sensory complaints Sensory disturbance Spasticity Weakness Pathological reflexes EDSS Mutation ABCD1 protein A 44 No No Yes No No No No Yes 1.0 p.Pro480Thr Absent A 56 Yes Yes No No No No No Yes 1.5 p.Pro480Thr Absent AA 45 No No No No No No No No 0 p.Arg660Trp Absent AA 59 Yes No Yes No No No Yes Yes 3.5 p.Arg660Trp Absent AA 75 Yes No Yes No Yes Yes Yes Yes 6.0 p.Arg660Trp Absent B 42 Yes Yes Yes No Yes Yes Yes Yes 4.0 p.Leu220Pro Reduced B 44 No No No No No No No No 0 p.Leu220Pro Reduced B 44 No No No No No No No No 0 p.Leu220Pro Reduced B 51 No No No Yes Yes No No No 1.0 p.Leu220Pro Reduced B 59 No No No Yes Yes No Yes No 2.0 p.Leu220Pro Reduced C 44 No No No No No No No No 0 p.Gln133* Absent D 38 Yes Yes Yes No Yes Yes Yes Yes 6.0 p.Leu654Pro Absent D 57 Yes No Yes Yes Yes No No Yes 5.5 p.Leu654Pro Absent E 31 No No No No No No No No 0 p.Arg74Trp Absent E 37 No No No No No No No No 0 p.Arg74Trp Absent E 60 No No Yes No Yes Yes Yes Yes 5.5 p.Arg74Trp Absent F 35 No No No No No No No No 0 p.Met1Val Absent G 42 No Yes No No No No No No 1.0 p.Ala245Asp Present H 61 Yes Yes Yes Yes Yes No No Yes 3.5 exon8-10del Absent I 71 No No No No Yes No No Yes 2.0 p.Glu609Lys Absent J 42 No No No No Yes No No Yes 1.5 p.Glu90* Absent K 31 No No No No No No No No 0 p.Pro543Leu Absent K 48 Yes No No No Yes No No Yes 2.5 p.Pro543Leu Absent K 57 No No Yes Yes Yes No Yes Yes 3.5 p.Pro543Leu Absent K 60 Yes No No No Yes No No Yes 3.5 p.Pro543Leu Absent L 51 Yes No Yes No Yes Yes Yes Yes 6.5 p.Ile657del Absent M 22 No No No No No No No No 0 p.Ser149Asn Reduced M 40 No No No No No No No No 0 p.Ser149Asn Reduced N 29 No No No No No No No No 0 p.Arg389His Reduced N 45 Yes No No Yes No No No No 2.0 p.Arg389His Reduced N 57 Yes Yes Yes Yes Yes No No No 3.5 p.Arg389His Reduced N 70 No No Yes No Yes No Yes Yes 3.5 p.Arg389His Reduced O 40 Yes Yes Yes Yes Yes No No Yes 3.5 p.Glu609Lys Absent P 59 Yes Yes Yes Yes Yes Yes Yes Yes 6.0 p.Leu215* Absent Q 39 No Yes Yes No Yes No No No 3.0 p.Val208Trpfs Absent R 28 No No No No No No No No 0 p.Pro480Thr Absent S 35 No No No No No No No No 0 p.His283Tyr Reduced (continued) Correlation studies of X-inactivation with asymptomatic or symptomatic status The distribution of ABCD1 allele-specific expression (which will be referred to as the pattern of X-inactivation) is shown in Fig. 5A.
X
ABCD1 p.Leu654Pro 24480483:141:905
status: NEWX
ABCD1 p.Leu654Pro 24480483:141:962
status: NEW