ABCD1 p.Glu630Gly
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] ABCD1 mutations and the X-linked adrenoleukodystro... Hum Mutat. 2001 Dec;18(6):499-515. Kemp S, Pujol A, Waterham HR, van Geel BM, Boehm CD, Raymond GV, Cutting GR, Wanders RJ, Moser HW
ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations.
Hum Mutat. 2001 Dec;18(6):499-515., [PMID:11748843]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC half-transporter (ALDP) involved in the import of very long-chain fatty acids (VLCFA) into the peroxisome. The disease is characterized by a striking and unpredictable variation in phenotypic expression. Phenotypes include the rapidly progressive childhood cerebral form (CCALD), the milder adult form, adrenomyeloneuropathy (AMN), and variants without neurologic involvement. There is no apparent correlation between genotype and phenotype. In males, unambiguous diagnosis can be achieved by demonstration of elevated levels of VLCFA in plasma. In 15 to 20% of obligate heterozygotes, however, test results are false-negative. Therefore, mutation analysis is the only reliable method for the identification of heterozygotes. Since most X-ALD kindreds have a unique mutation, a great number of mutations have been identified in the ABCD1 gene in the last seven years. In order to catalog and facilitate the analysis of these mutations, we have established a mutation database for X-ALD ( http://www.x-ald.nl). In this review we report a detailed analysis of all 406 X-ALD mutations currently included in the database. Also, we present 47 novel mutations. In addition, we review the various X-ALD phenotypes, the different diagnostic tools, and the need for extended family screening for the identification of new patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
174 P560S 7 1678C>T n.d. # P560L 7 1679C>T Reduced P560L 7 1679C>T Reduced fs I588 7 1765delC n.d. # R591P 7 1772G>C Absent S606L 8 1817C>T Present E609K 8 1825G>A Absent E609K 8 1825G>A Absent R617C 8 1849C>T Absent R617H 8 1850G>A Absent R617H 8 1850G>A Absent A626T 9 1876G>A Absent A626T 9 1876G>A Absent A626D 9 1877C>A n.d. # E630G 9 1889A>G n.d. # C631Y 9 1892G>A n.d. # T632I 9 1895C>T n.d. # V635M 9 1903G>A n.d. # L654P 9 1961T>C Absent # R660W 9 1978C>T Absent fs L663 9 1988insT n.d. # fs L663 IVS 9 IVS9+1g>a n.d. # fs L663 IVS 9 IVS9-1g>a n.d. # H667D 10 1999C>G Absent # T668I 10 2003C>T Absent # T693M 10 2078C>T Present # exon1-5del 1-5 n.d. # The 47 mutations marked with a # are novel unique mutations reported for the first time in this paper.
X
ABCD1 p.Glu630Gly 11748843:174:328
status: NEW