ABCD1 p.Pro263Leu
Predicted by SNAP2: | A: D (85%), C: D (85%), D: D (95%), E: D (95%), F: D (91%), G: D (91%), H: D (91%), I: D (91%), K: D (91%), L: D (91%), M: D (91%), N: D (95%), Q: D (91%), R: D (91%), S: D (91%), T: D (91%), V: D (91%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Mutational and protein analysis of patients and he... Am J Hum Genet. 1996 Jun;58(6):1135-44. Feigenbaum V, Lombard-Platet G, Guidoux S, Sarde CO, Mandel JL, Aubourg P
Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy.
Am J Hum Genet. 1996 Jun;58(6):1135-44., [PMID:8651290]
Abstract [show]
X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder associated with impaired beta-oxidation of very-long-chain fatty acids (VLCFA), is due to mutations in a gene encoding a peroxisomal ATP-binding cassette (ABC) transporter (ALD protein [ALDP]). We analyzed the open reading frame of the ALD gene in 44 French ALD kindred by using SSCP or denaturing gradient-gel electrophoresis and studied the effect of mutations on ALDP by immunocytofluorescence and western blotting of fibroblasts and/or white blood cells. Mutations were detected in 37 of 44 kindreds and were distributed over the whole protein-coding region, with the exception of the C terminus encoded in exon 10. Except for two mutations (delAG1801 and P560L) observed four times each, nearly every ALD family has a different mutation. Twenty-four of 37 mutations were missense mutations leading to amino acid changes located in or close to putative transmembrane segments (TMS 2, 3, 4, and 5), in the EAA-like motif and in the nucleotide fold of the ATP-binding domain of ALDP. Of 38 ALD patients tested, 27 (71%) lacked ALDP immunoreactivity in their fibroblasts and/or white blood cells. More than half of missense mutations studied (11 of 21) resulted in a complete lack of ALDP immunoreactivity, and six missense mutations resulted in decreased ALDP expression. The fibroblasts and/or white blood cells of 15 of 15 heterozygous carrier from ALD kindred with no ALDP showed a mixture of positive- and negative-ALDP immunoreactivity due to X-inactivation. Since 5%-15% of heterozygous women have normal VLCFA levels, the immunodetection of ALDP in white blood cells can be applicable in a majority of ALD kindred, to identify heterozygous women, particularly when the ALD gene mutation has not yet been identified.
Comments [show]
None has been submitted yet.
No. Sentence Comment
131 Lane 1, protein markers; lane 2, control; lane 3, patient 18 (S108W); lane 4, patient 32 (P263L); lane 5, patient 5 (P560L); lane 6, patient 4 (G116R); lane 7, patient 19 (D221G); lane 8, patient 33 (S98L); lane 9, patient 78 (S606P); lane 10, patient 3 (no mutation found); lane 11, patient 37 (P560L); lane 12, patient 22 (R660W); lane 13, control; lane 14, patient 39 (T1051); lane 15, patient 4 (G116R); lane 16, patient 43 (frameshift at Y180); lane 17, patient 5 (P560L); lane 18, patient 59 (G512S); lane 19, patient 29 (frameshift at D649); lane 20, patient 69 (P560L); lane 21, patient 19 (D221G); lane 22, patient 64 (W1OX); lane 23, patient 63 (frameshift at R231); lane 24, patient 52 (no mutation found); lane 25, patient 61 (frameshift at E471); and lane 26, patient 83 (G522W).
X
ABCD1 p.Pro263Leu 8651290:131:90
status: NEW173 Four missense mutations (S108W, P263L, R518W, and P560L) resulted in decreased ALDP immunoreactivity reflecting likely instability and/or partial deficiency in the peroxisomal targeting of ALDP.
X
ABCD1 p.Pro263Leu 8651290:173:32
status: NEW174 Three missense mutations (S98L, N148S, and R152C) resulted in the synthesis of a stable but presumably nonfunctioning protein.
X
ABCD1 p.Pro263Leu 8651290:174:32
status: NEW