ABCC8 p.Gly1478Arg
Predicted by SNAP2: | A: D (75%), C: D (75%), D: D (85%), E: D (80%), F: D (85%), H: D (85%), I: D (80%), K: D (91%), L: D (85%), M: D (80%), N: D (80%), P: D (91%), Q: D (85%), R: D (91%), S: D (75%), T: D (80%), V: D (75%), W: D (85%), Y: D (85%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] The spectrum of ABCC8 mutations in Norwegian patie... Clin Genet. 2009 May;75(5):440-8. Sandal T, Laborie LB, Brusgaard K, Eide SA, Christesen HB, Sovik O, Njolstad PR, Molven A
The spectrum of ABCC8 mutations in Norwegian patients with congenital hyperinsulinism of infancy.
Clin Genet. 2009 May;75(5):440-8., [PMID:19475716]
Abstract [show]
Potassium channels in the plasma membrane of the pancreatic beta cells are critical in maintaining glucose homeostasis by responding to ATP and coupling metabolic changes to insulin secretion. These channels consist of subunits denoted the sulfonylurea receptor SUR1 and the inwardly rectifying ion channel KIR6.2, which are encoded by the genes ABCC8 and KCNJ11, respectively. Activating mutations in the subunit genes can result in monogenic diabetes, whereas inactivating mutations are the most common cause of congenital hyperinsulinism of infancy (CHI). Twenty-six Norwegian probands with CHI were analyzed for alterations in ABCC8 and KCNJ11. Fifteen probands (58%) had mutations in the ABCC8 gene. Nine patients were homozygous or compound heterozygous for the mutations, indicating diffuse pancreatic disease. In five patients, heterozygous and paternally inherited mutations were found, suggesting focal disease. One patient had a de novo mutation likely to cause a milder, dominant form of CHI. Altogether, 16 different ABCC8 mutations (including the novel alterations W231R, C267X, IVS6-3C>G, I462V, Q917X and T1531A) were identified. The mutations IVS10+1G>T, R1493W and V21D occurred in five, three and two families, respectively. KCNJ11 mutations were not found in any patients. Based on our mutation screening, we estimate the minimum birth prevalence of ABCC8-CHI in Norway to 1:70,000 during the past decade. Our results considerably extend the knowledge of the molecular genetics behind CHI in Scandinavia.
Comments [show]
None has been submitted yet.
No. Sentence Comment
122 We classified the mutations as either MnMn Hypo-N3 R1493W MMMM Mn Mn Hypo-N6 V21D MM MnMn Hypo-N8 G1400R / R1493W MM nnMn Hypo-N9 IVS10 Mn Hypo-N11 G1478R Mn nnMn Hypo-N16 C267X Mn Mn Hypo-N19 IVS10 / T1531A MM Mn nn Hypo-N29 IVS10 Mn Mn Hypo-N30 W231R / L503P MM MM x Hypo-N23 IVS10 / P1413L MM x Hypo-N14 IVS10 Mn Hypo-N22 IVS6 (I462V) / Q917X MM Hypo-N25 V21D / E490X MM xx Hypo-N26 V187D / R248 X MM x Hypo-N31 R1493W nnMnMnMn nnnnMn MnMn MM MnMn Mn nnnn Fig. 1.
X
ABCC8 p.Gly1478Arg 19475716:122:148
status: NEW131 In families Hypo-N11 and Hypo-N19, the mutations G1478R and T1531A occurred de novo as they were not seen in blood samples from the parents.
X
ABCC8 p.Gly1478Arg 19475716:131:49
status: NEW133 ABCC8 mutations found in Norwegian CHI patientsa Nucleotide change Location Amino acid change Mutation type PSIC score PD Number of families Reference c.62 T.A Exon 1 V21D Mis 1.96 PoD 2 (24) c.560 T.A Exon 4 V187D Mis 2.01 PrD 1 (2) c.691 T.C Exon 5 W231R Mis 4.03 PrD 1 NR c.742 C.T Exon 5 R248X Non - - 1 (34, 42) c.801 C.A Exon 5 C267X Non - - 1 NR IVS6-3C.G Intron 6 - AS - - 1 NR c.1384 A.G Exon 9 I462V Mis 0.62 PrB 1 NR c.1468 G.T Exon 10 E490X Non - - 1 (43) c.1508 T.C Exon 10 L503P Mis 2.36 PrD 1 (24) IVS1011G.T Intron 10 - AS - - 5 (44) c.2749 C.T Exon 23 Q917X Non - - 1 NR c.4198 G.A Exon 35 G1400R Mis 2.37 PrD 1 (42) c.4238 C.T Exon 35 P1413L Mis 2.76 PrD 1 (25) c.4432 G.A Exon 37 G1478R Mis 2.37 PrD 1 (14, 31) c.4477 C.T Exon 37 R1493W Mis 2.79 PrD 3 (26) c.4591 A.G Exon 38 T1531A Mis 1.93 PoD 1 NR AS, aberrant splicing; Mis, missense; NR, not previously reported; Non, nonsense; PD, pathogenic description; PoD, possibly damaging; PrB, predicted to be benign; PrD, probably damaging; PSIC, position-specific independent counts.
X
ABCC8 p.Gly1478Arg 19475716:133:699
status: NEW139 The sixth heterozygous subject (Hypo-N11) carried the G1478R mutation and had a mild phenotype.
X
ABCC8 p.Gly1478Arg 19475716:139:54
status: NEW140 DNA from his healthy parents did not contain G1478R, suggesting dominant CHI caused by a de novo mutation (31).
X
ABCC8 p.Gly1478Arg 19475716:140:45
status: NEW156 One proband had a heterozygous de novo G1478R mutation, which recently has been reported to cause a milder, dominantly acting form of the disease (31).
X
ABCC8 p.Gly1478Arg 19475716:156:39
status: NEW168 A largenumber (.150)ofABCC8 alterations have been reported to cause CHI (19) including 10 of the mutations observed in this study (V21D, V187D, R248X, E490X, L503P, IVS1011G.T, G1400R, P1413L, G1478R, and R1493W).
X
ABCC8 p.Gly1478Arg 19475716:168:193
status: NEW[hide] Functional hot spots in human ATP-binding cassette... Protein Sci. 2010 Nov;19(11):2110-21. Kelly L, Fukushima H, Karchin R, Gow JM, Chinn LW, Pieper U, Segal MR, Kroetz DL, Sali A
Functional hot spots in human ATP-binding cassette transporter nucleotide binding domains.
Protein Sci. 2010 Nov;19(11):2110-21., [PMID:20799350]
Abstract [show]
The human ATP-binding cassette (ABC) transporter superfamily consists of 48 integral membrane proteins that couple the action of ATP binding and hydrolysis to the transport of diverse substrates across cellular membranes. Defects in 18 transporters have been implicated in human disease. In hundreds of cases, disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs). The functional impact of the majority of ABC transporter nsSNPs has yet to be experimentally characterized. Here, we combine experimental mutational studies with sequence and structural analysis to describe the impact of nsSNPs in human ABC transporters. First, the disease associations of 39 nsSNPs in 10 transporters were rationalized by identifying two conserved loops and a small alpha-helical region that may be involved in interdomain communication necessary for transport of substrates. Second, an approach to discriminate between disease-associated and neutral nsSNPs was developed and tailored to this superfamily. Finally, the functional impact of 40 unannotated nsSNPs in seven ABC transporters identified in 247 ethnically diverse individuals studied by the Pharmacogenetics of Membrane Transporters consortium was predicted. Three predictions were experimentally tested using human embryonic kidney epithelial (HEK) 293 cells stably transfected with the reference multidrug resistance transporter 4 and its variants to examine functional differences in transport of the antiviral drug, tenofovir. The experimental results confirmed two predictions. Our analysis provides a structural and evolutionary framework for rationalizing and predicting the functional effects of nsSNPs in this clinically important membrane transporter superfamily.
Comments [show]
None has been submitted yet.
No. Sentence Comment
50 Disease-associated nsSNPs at Three Structural Hotspots in Human ABC Transporter NBDs Gene Disease Position ARA motif ABCB11 BRIC2 A570T ABCD1 X-ALD A616V CFTR CF A559T ABCC6 PXE R765Q ABCC8 HHF1 R841G ABCC8 HHF1 R1493Q ABCC8 HHF1 R1493W ABCD1 X-ALD R617C ABCD1 X-ALD R617G ABCD1 X-ALD R617H CFTR CF R560K CFTR CF R560S CFTR CF R560T ABCA1 HDLD1 A1046D ABCB4 ICP A546D C-loop 1 motif ABCC8 HHF1 D1471H ABCC8 HHF1 D1471N CFTR CBAVD G544V ABCC8 HHF1 G1478R C-loop2 motif ABCA4 STGD1 H2128R ABCC8 HHF1 K889T ABCD1 X-ALD R660P ABCD1 X-ALD R660W ABCA1 HDLD2 M1091T ABCA4 STGD1 E2131K ABCA12 LI2 E1539K ABCA4 STGD1 and CORD3 E1122K CFTR CF L610S ABCC8 HHF1 L1543P ABCA1 Colorectal cancer sample; somatic mutation A2109T ABCC9 CMD1O A1513T ABCD1 X-ALD H667D CFTR CF A613T ABCA1 HDLD2 D1099Y ABCD1 X-ALD T668I CFTR CF D614G ABCA4 STGD1 R2139W ABCA4 STGD1 R1129C ABCA4 ARMD2, STGD1, and FFM R1129L Disease abbreviations are as follows: BRIC2, benign recurrent intrahepatic cholestasis type 2; X-ALD, X-linked adrenoleukodystrophy; CF, cystic fibrosis; PXE, Pseudoxanthoma elasticum; HHF1, familial hyperinsulinemic hypoglycemia-1; HDLD1, high density lipoprotein deficiency type 1; ICP, intrahepatic cholestasis of pregnancy; CBAVD, congenital bilateral absence of the vas deferens; STGD1, Stargardt disease type 1; HDLD2, high density lipoprotein deficiency type 2; LI2, ichthyosis lamellar type 2; CORD3, cone-rod dystrophy type 3; CMD1O, cardiomyopathy dilated type 1O; ARMD2, age-related macular degeneration type 2; FFM, fundus flavimaculatus.
X
ABCC8 p.Gly1478Arg 20799350:50:447
status: NEW