ABCC8 p.Gly716Val
ClinVar: |
c.2147G>T
,
p.Gly716Val
D
, Pathogenic
|
Predicted by SNAP2: | A: D (91%), C: D (91%), D: D (95%), E: D (95%), F: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (91%), P: D (95%), Q: D (95%), R: D (95%), S: D (91%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Molecular biology of adenosine triphosphate-sensit... Endocr Rev. 1999 Apr;20(2):101-35. Aguilar-Bryan L, Bryan J
Molecular biology of adenosine triphosphate-sensitive potassium channels.
Endocr Rev. 1999 Apr;20(2):101-35., [PMID:10204114]
Abstract [show]
KATP channels are a newly defined class of potassium channels based on the physical association of an ABC protein, the sulfonylurea receptor, and a K+ inward rectifier subunit. The beta-cell KATP channel is composed of SUR1, the high-affinity sulfonylurea receptor with multiple TMDs and two NBFs, and KIR6.2, a weak inward rectifier, in a 1:1 stoichiometry. The pore of the channel is formed by KIR6.2 in a tetrameric arrangement; the overall stoichiometry of active channels is (SUR1/KIR6.2)4. The two subunits form a tightly integrated whole. KIR6.2 can be expressed in the plasma membrane either by deletion of an ER retention signal at its C-terminal end or by high-level expression to overwhelm the retention mechanism. The single-channel conductance of the homomeric KIR6.2 channels is equivalent to SUR/KIR6.2 channels, but they differ in all other respects, including bursting behavior, pharmacological properties, sensitivity to ATP and ADP, and trafficking to the plasma membrane. Coexpression with SUR restores the normal channel properties. The key role KATP channel play in the regulation of insulin secretion in response to changes in glucose metabolism is underscored by the finding that a recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is caused by mutations in KATP channel subunits that result in the loss of channel activity. KATP channels set the resting membrane potential of beta-cells, and their loss results in a constitutive depolarization that allows voltage-gated Ca2+ channels to open spontaneously, increasing the cytosolic Ca2+ levels enough to trigger continuous release of insulin. The loss of KATP channels, in effect, uncouples the electrical activity of beta-cells from their metabolic activity. PHHI mutations have been informative on the function of SUR1 and regulation of KATP channels by adenine nucleotides. The results indicate that SUR1 is important in sensing nucleotide changes, as implied by its sequence similarity to other ABC proteins, in addition to being the drug sensor. An unexpected finding is that the inhibitory action of ATP appears to be through a site located on KIR6.2, whose affinity for ATP is modified by SUR1. A PHHI mutation, G1479R, in the second NBF of SUR1 forms active KATP channels that respond normally to ATP, but fail to activate with MgADP. The result implies that ATP tonically inhibits KATP channels, but that the ADP level in a fasting beta-cell antagonizes this inhibition. Decreases in the ADP level as glucose is metabolized result in KATP channel closure. Although KATP channels are the target for sulfonylureas used in the treatment of NIDDM, the available data suggest that the identified KATP channel mutations do not play a major role in diabetes. Understanding how KATP channels fit into the overall scheme of glucose homeostasis, on the other hand, promises insight into diabetes and other disorders of glucose metabolism, while understanding the structure and regulation of these channels offers potential for development of novel compounds to regulate cellular electrical activity.
Comments [show]
None has been submitted yet.
No. Sentence Comment
740 Two of these mutations are expected to lead to severe truncations of SUR1 in or near NBF1, while the third mutation results in a gly3val substitution at position 716, G716V, in the Walker A motif.
X
ABCC8 p.Gly716Val 10204114:740:167
status: NEW754 With the exception of the severe truncations and the G716V mutation, the SUR1 mutants retain high-affinity sulfonylurea binding activity, suggesting their folding is not completely aberrant.
X
ABCC8 p.Gly716Val 10204114:754:53
status: NEW[hide] Functional analyses of novel mutations in the sulf... Diabetes. 1998 Jul;47(7):1145-51. Shyng SL, Ferrigni T, Shepard JB, Nestorowicz A, Glaser B, Permutt MA, Nichols CG
Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy.
Diabetes. 1998 Jul;47(7):1145-51., [PMID:9648840]
Abstract [show]
The ATP-sensitive potassium channel, K(ATP) channel, a functional complex of the sulfonylurea receptor 1, SUR1, and an inward rectifier potassium channel subunit, Kir6.2, regulates insulin secretion in the pancreas. Mutations in both the Kir6.2 and SUR1 genes are associated with persistent hyperinsulinemic hypoglycemia of infancy (PHHI), a disorder of pancreatic beta-cell function characterized by excess insulin secretion and hypoglycemia. We have studied the functional properties of novel SUR1 mutations identified in PHHI patients, including H125Q, N188S, F591L, T1139M, R1215Q, G1382S, and R1394H. R1394H and deltaF1388 SUR1, a previously identified PHHI mutation, resulted in no functional channels when coexpressed with Kir6.2 in COS cells, while H125Q, N188S, F591L, T1139M, R1215Q, and G1382S SUR1 generated functional channels in the absence of ATP. With the exception of N188S and H125Q, all mutants had reduced response to stimulation by MgADP. These results indicate that lack of, or reduction of, K(ATP) channel sensitivity to MgADP is a common molecular defect associated with the disease. The mutant channels also showed varied response to activation by the potassium channel opener diazoxide. Because these mutations are distributed throughout the molecule, our data have new implications for structure-function relationships of the K(ATP) channel, suggesting that structural elements in SUR1 outside of the two nucleotide-binding folds are also important in regulating channel activity.
Comments [show]
None has been submitted yet.
No. Sentence Comment
173 Previously identified PHHI missense SUR1 mutations were all positioned within the two nucleotide-binding folds, including G1479R (11), F1388 (23), and G716V (25).
X
ABCC8 p.Gly716Val 9648840:173:151
status: NEW[hide] Congenital hyperinsulinism associated ABCC8 mutati... Diabetes. 2007 Sep;56(9):2339-48. Epub 2007 Jun 15. Yan FF, Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL
Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue.
Diabetes. 2007 Sep;56(9):2339-48. Epub 2007 Jun 15., [PMID:17575084]
Abstract [show]
Congenital hyperinsulinism (CHI) is a disease characterized by persistent insulin secretion despite severe hypoglycemia. Mutations in the pancreatic ATP-sensitive K(+) (K(ATP)) channel proteins sulfonylurea receptor 1 (SUR1) and Kir6.2, encoded by ABCC8 and KCNJ11, respectively, is the most common cause of the disease. Many mutations in SUR1 render the channel unable to traffic to the cell surface, thereby reducing channel function. Previous studies have shown that for some SUR1 trafficking mutants, the defects could be corrected by treating cells with sulfonylureas or diazoxide. The purpose of this study is to identify additional mutations that cause channel biogenesis/trafficking defects and those that are amenable to rescue by pharmacological chaperones. Fifteen previously uncharacterized CHI-associated missense SUR1 mutations were examined for their biogenesis/trafficking defects and responses to pharmacological chaperones, using a combination of immunological and functional assays. Twelve of the 15 mutations analyzed cause reduction in cell surface expression of K(ATP) channels by >50%. Sulfonylureas rescued a subset of the trafficking mutants. By contrast, diazoxide failed to rescue any of the mutants. Strikingly, the mutations rescued by sulfonylureas are all located in the first transmembrane domain of SUR1, designated as TMD0. All TMD0 mutants rescued to the cell surface by the sulfonylurea tolbutamide could be subsequently activated by metabolic inhibition on tolbutamide removal. Our study identifies a group of CHI-causing SUR1 mutations for which the resulting K(ATP) channel trafficking and expression defects may be corrected pharmacologically to restore channel function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
47 TABLE 1 Genetic and clinical information on patients carrying the CHI mutations Mutation Disease Haplotype Diazoxide response References G7R Focal G7R No 44 N24K Diffuse N24K/R1215W No Not reported F27S Focal F27S No 39 R74W Focal R74W/R1215Q No 39,45,46 E128K Diffuse E128K No Not reported R495Q Diffuse R495Q/R1215Q No 39 E501K Focal E501K No 39 L503P Focal L503P No 44 F686S Focal F686S No 39 G716V* Diffuse G716V/G716V No 47,48 K1337N Not done g3992-9a/K1337N Yes 39 L1350Q Focal L1350Q No 44 S1387F Diffuse S1387F/NA No 9,24 L1390P NA L1390P/NA No Not reported D1472H Diffuse ⌬F1388/D1472H No 39 *Patient was from consanguineous mating and therefore was homozygous for the G716V mutation (48).
X
ABCC8 p.Gly716Val 17575084:47:411
status: NEWX
ABCC8 p.Gly716Val 17575084:47:417
status: NEWX
ABCC8 p.Gly716Val 17575084:47:685
status: NEW94 The first group, including G7R, N24K, F27S, R74W, and E128K, is located in the first transmembrane domain TMD0; the second group, including R495Q, E501K, L503P, F686S, and G716V, is located in the second transmembrane domain TMD1 extending through the first nucleotide binding domain; the third group, including K1337N, L1350Q, S1387F, L1390P, and D1472H, is clustered in the second nucleotide binding domain and the COOH terminus of the protein.
X
ABCC8 p.Gly716Val 17575084:94:172
status: NEW118 Results from this assay showed that F27S, R74W, E128K, R495Q, E501K, L503P, F686S, G716V, L1350Q, and D1472H mutant channels had greatly reduced surface expression (Ͻ20% of wild-type level)-whereas G7R and N24K mutant channels displayed modestly decreased surface expression level (Ͼ30% but Ͻ50% of wild-type level) and K1337N, S1378F, and L1390P exhibited normal or mildly reduced expression (Ͼ60% of wild-type level; Fig. 3A).
X
ABCC8 p.Gly716Val 17575084:118:83
status: NEW48 TABLE 1 Genetic and clinical information on patients carrying the CHI mutations Mutation Disease Haplotype Diazoxide response References G7R Focal G7R No 44 N24K Diffuse N24K/R1215W No Not reported F27S Focal F27S No 39 R74W Focal R74W/R1215Q No 39,45,46 E128K Diffuse E128K No Not reported R495Q Diffuse R495Q/R1215Q No 39 E501K Focal E501K No 39 L503P Focal L503P No 44 F686S Focal F686S No 39 G716V* Diffuse G716V/G716V No 47,48 K1337N Not done g3992-9a/K1337N Yes 39 L1350Q Focal L1350Q No 44 S1387F Diffuse S1387F/NA No 9,24 L1390P NA L1390P/NA No Not reported D1472H Diffuse èc;F1388/D1472H No 39 *Patient was from consanguineous mating and therefore was homozygous for the G716V mutation (48).
X
ABCC8 p.Gly716Val 17575084:48:411
status: NEWX
ABCC8 p.Gly716Val 17575084:48:417
status: NEWX
ABCC8 p.Gly716Val 17575084:48:684
status: NEW95 The first group, including G7R, N24K, F27S, R74W, and E128K, is located in the first transmembrane domain TMD0; the second group, including R495Q, E501K, L503P, F686S, and G716V, is located in the second transmembrane domain TMD1 extending through the first nucleotide binding domain; the third group, including K1337N, L1350Q, S1387F, L1390P, and D1472H, is clustered in the second nucleotide binding domain and the COOH terminus of the protein.
X
ABCC8 p.Gly716Val 17575084:95:172
status: NEW119 Results from this assay showed that F27S, R74W, E128K, R495Q, E501K, L503P, F686S, G716V, L1350Q, and D1472H mutant channels had greatly reduced surface expression (b0d;20% of wild-type level)-whereas G7R and N24K mutant channels displayed modestly decreased surface expression level (b0e;30% but b0d;50% of wild-type level) and K1337N, S1378F, and L1390P exhibited normal or mildly reduced expression (b0e;60% of wild-type level; Fig. 3A).
X
ABCC8 p.Gly716Val 17575084:119:83
status: NEW[hide] ABCC8 and KCNJ11 molecular spectrum of 109 patient... J Med Genet. 2010 Nov;47(11):752-9. Epub 2010 Aug 3. Bellanne-Chantelot C, Saint-Martin C, Ribeiro MJ, Vaury C, Verkarre V, Arnoux JB, Valayannopoulos V, Gobrecht S, Sempoux C, Rahier J, Fournet JC, Jaubert F, Aigrain Y, Nihoul-Fekete C, de Lonlay P
ABCC8 and KCNJ11 molecular spectrum of 109 patients with diazoxide-unresponsive congenital hyperinsulinism.
J Med Genet. 2010 Nov;47(11):752-9. Epub 2010 Aug 3., [PMID:20685672]
Abstract [show]
BACKGROUND: Congenital hyperinsulinism (CHI) is characterised by an over secretion of insulin by the pancreatic beta-cells. This condition is mostly caused by mutations in ABCC8 or KCNJ11 genes encoding the SUR1 and KIR6.2 subunits of the ATP-sensitive potassium (K(ATP)) channel. CHI patients are classified according to their responsiveness to diazoxide and to their histopathological diagnosis (either focal, diffuse or atypical forms). Here, we raise the benefits/limits of the genetic diagnosis in the clinical management of CHI patients. METHODS: ABCC8/KCNJ11 mutational spectrum was established in 109 diazoxide-unresponsive CHI patients for whom an appropriate clinical management is essential to prevent brain damage. Relationships between genotype and radiopathological diagnosis were analysed. RESULTS: ABCC8 or KCNJ11 defects were found in 82% of the CHI cases. All patients with a focal form were associated with a single K(ATP) channel molecular event. In contrast, patients with diffuse forms were genetically more heterogeneous: 47% were associated with recessively inherited mutations, 34% carried a single heterozygous mutation and 19% had no mutation. There appeared to be a predominance of paternally inherited mutations in patients diagnosed with a diffuse form and carrying a sole K(ATP) channel mutation. CONCLUSIONS: The identification of recessively inherited mutations related to severe and diffuse forms of CHI provides an informative genetic diagnosis and allows prenatal diagnosis. In contrast, in patients carrying a single K(ATP) channel mutation, genetic analysis should be confronted with the PET imaging to categorise patients as focal or diffuse forms in order to get the appropriate therapeutic management.
Comments [show]
None has been submitted yet.
No. Sentence Comment
119 There is strong evidence that the identified mutation Gly716Asp is pathogenic: (1) it is located in the first nucleotide binding domain, (2) the same residue was reported to be altered (Gly716Val) in a homozygous recessive form of CHI resistant to diazoxide30 and (3) the functional study of Gly716Val showed a reduced surface expression of the mutant channel.31 Among the eight paternally inherited cases, no clinical symptom was reported in the fathers at the time of the child`s diagnosis.
X
ABCC8 p.Gly716Val 20685672:119:186
status: NEWX
ABCC8 p.Gly716Val 20685672:119:292
status: NEW123 There is strong evidence that the identified mutation Gly716Asp is pathogenic: (1) it is located in the first nucleotide binding domain, (2) the same residue was reported to be altered (Gly716Val) in a homozygous recessive form of CHI resistant to diazoxide30 and (3) the functional study of Gly716Val showed a reduced surface expression of the mutant channel.31 Among the eight paternally inherited cases, no clinical symptom was reported in the fathers at the time of the child`s diagnosis.
X
ABCC8 p.Gly716Val 20685672:123:186
status: NEWX
ABCC8 p.Gly716Val 20685672:123:292
status: NEW[hide] Genetic heterogeneity in familial hyperinsulinism. Hum Mol Genet. 1998 Jul;7(7):1119-28. Nestorowicz A, Glaser B, Wilson BA, Shyng SL, Nichols CG, Stanley CA, Thornton PS, Permutt MA
Genetic heterogeneity in familial hyperinsulinism.
Hum Mol Genet. 1998 Jul;7(7):1119-28., [PMID:9618169]
Abstract [show]
Familial hyperinsulinism (HI) is a disorder characterized by dysregulation of insulin secretion and profound hypoglycemia. Mutations in both the Kir6.2 and sulfonylurea receptor (SUR1) genes have been associated with the autosomal recessive form of this disorder. In this study, the spectrum and frequency of SUR1 mutations in HI and their significance to clinical manifestations of the disease were investigated by screening 45 HI probands of various ethnic origins for mutations in the SUR1 gene. Single-strand conformation polymorphism (SSCP) and nucleotide sequence analyses of genomic DNA revealed a total of 17 novel and three previously described mutations in SUR1 . The novel mutations comprised one nonsense and 10 missense mutations, two deletions, three mutations in consensus splice-site sequences and an in-frame insertion of six nucleotides. One mutation occurred in the first nucleotide binding domain (NBF-1) of the SUR1 molecule and another eight mutations were located in the second nucleotide binding domain (NBF-2), including two at highly conserved amino acid residues within the Walker A sequence motif. The majority of the remaining mutations was distributed throughout the three putative transmembrane domains of the SUR1 protein. With the exception of the 3993-9G-->A mutation, which was detected on 4.5% (4/88) disease chromosomes, allelic frequencies for the identified mutations varied between 1.1 and 2.3% for HI chromosomes, indicating that each mutation was rare within the patient cohort. The clinical manifestations of HI in those patients homozygous for mutations in the SUR1 gene are described. In contrast with the allelic homogeneity of HI previously described in Ashkenazi Jewish patients, these findings suggest that a large degree of allelic heterogeneity at the SUR1 locus exists in non-Ashkenazi HI patients. These data have important implications for genetic counseling and prenatal diagnosis of HI, and also provide a basis to further elucidate the molecular mechanisms underlying the pathophysiology of this disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
192 Furthermore, an analogous mutation (G716V) at Gly2 in the Walker A sequence motif in NBF-1 of the SUR1 protein has also been described in a HI patient (14).
X
ABCC8 p.Gly716Val 9618169:192:36
status: NEW242 Genomic DNA samples were also analyzed for the presence of six previously described mutations (1671-20A→G, G716V, 2291-1G→A, 3993-9G→A, ∆F1388 and G1479R) by PCR amplification of relevant exons and flanking intron-exon boundaries, followed by restriction enzyme digestion as described in detail elsewhere (12-15).
X
ABCC8 p.Gly716Val 9618169:242:114
status: NEW[hide] A point mutation inactivating the sulfonylurea rec... Diabetes. 1999 Feb;48(2):408-15. Otonkoski T, Ammala C, Huopio H, Cote GJ, Chapman J, Cosgrove K, Ashfield R, Huang E, Komulainen J, Ashcroft FM, Dunne MJ, Kere J, Thomas PM
A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycemia of infancy in Finland.
Diabetes. 1999 Feb;48(2):408-15., [PMID:10334322]
Abstract [show]
Mutations in genes encoding the ATP-regulated potassium (K(ATP)) channels of the pancreatic beta-cell (SUR1 and Kir6.2) are the major known cause of persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We collected all cases of PHHI diagnosed in Finland between 1983 and 1997 (n = 24). The overall incidence was 1:40,400, but in one area of Central Finland it was as high as 1:3,200. Haplotype analysis using polymorphic markers spanning the SUR1/Kir6.2 gene cluster confirmed linkage to the 11p region. Sequence analysis revealed a novel point mutation in exon 4 of SUR1, predicting a valine to aspartic acid change at amino acid 187 (V187D). Of the total cases, 15 affected individuals harbored this mutation in heterozygous or homozygous form, and all of these had severe hyperinsulinemia that responded poorly to medical treatment and required subtotal pancreatectomy. No K(ATP) channel activity was observed in beta-cells isolated from a homozygous patient or after coexpression of recombinant Kir6.2 and SUR1 carrying the V187D mutation. Thus, the mutation produces a nonfunctional channel and, thereby, continuous insulin secretion. This unique SUR1 mutation explains the majority of PHHI cases in Finland and is strongly associated with a severe form of the disease. These findings provide diagnostic and prognostic utility for suspected PHHI patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
141 The SUR1 gene mutations 1672-20A→G (intron 11), G716V, 2292-1G→A (intron 18), 3992-9G→A (intron 32), G1400D(23)X, 1388 and G1479R, and the Kir6.2 gene mutation L147P, were not present when assayed for by restriction digestion of PCR products amplified from genomic DNA samples as previously described (8,9,11,14).
X
ABCC8 p.Gly716Val 10334322:141:55
status: NEW[hide] The structure and function of the ATP-sensitive K+... J Mol Endocrinol. 1999 Apr;22(2):113-23. Miki T, Nagashima K, Seino S
The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells.
J Mol Endocrinol. 1999 Apr;22(2):113-23., [PMID:10194514]
Abstract [show]
ATP-sensitive K+ channels (KATP channels) play important roles in many cellular functions by coupling cell metabolism to electrical activity. The KATP channels in pancreatic beta-cells are thought to be critical in the regulation of glucose-induced and sulfonylurea-induced insulin secretion. Until recently, however, the molecular structure of the KATP channel was not known. Cloning members of the novel inwardly rectifying K+ channel subfamily Kir6.0 (Kir6.1 and Kir6.2) and the sulfonylurea receptors (SUR1 and SUR2) has clarified the molecular structure of KATP channels. The pancreatic beta-cell KATP channel comprises two subunits: a Kir6.2 subunit and an SUR1 subunit. Molecular biological and molecular genetic studies have provided insights into the physiological and pathophysiological roles of the pancreatic beta-cell KATP channel in insulin secretion.
Comments [show]
None has been submitted yet.
No. Sentence Comment
87 G716V (Thomas et al. 1996a), G1479R (Nichols et al. 1996) and L147P (Thomas et al. 1996b) are missense mutations.
X
ABCC8 p.Gly716Val 10194514:87:0
status: NEW135 Three mutations of the NBF-1 region (G716V, 1672-20 adenine<guanine, and 2292-1 guanine< adenine) were also described (Thomas et al. 1996a).
X
ABCC8 p.Gly716Val 10194514:135:37
status: NEW136 The affected children studied were homozygous for an amino acid substitution in Walker A motif of NBF-1 (G716V) and others were found to be compound heterozygous for two mutations in introns, 20 bp upstream from exon 12 and 1 bp upstream from exon 19 respectively.
X
ABCC8 p.Gly716Val 10194514:136:105
status: NEW[hide] Congenital hyperinsulinism: clinical and molecular... Gene. 2013 May 25;521(1):160-5. doi: 10.1016/j.gene.2013.03.021. Epub 2013 Mar 16. Faletra F, Athanasakis E, Morgan A, Biarnes X, Fornasier F, Parini R, Furlan F, Boiani A, Maiorana A, Dionisi-Vici C, Giordano L, Burlina A, Ventura A, Gasparini P
Congenital hyperinsulinism: clinical and molecular analysis of a large Italian cohort.
Gene. 2013 May 25;521(1):160-5. doi: 10.1016/j.gene.2013.03.021. Epub 2013 Mar 16., [PMID:23506826]
Abstract [show]
Congenital hyperinsulinism (CHI) is a genetic disorder characterized by profound hypoglycemia related to an inappropriate insulin secretion. It is a heterogeneous disease classified into two major subgroups: "channelopathies" due to defects in ATP-sensitive potassium channel, encoded by ABCC8 and KCNJ11 genes, and "metabolopathies" caused by mutation of several genes (GLUD1, GCK, HADH, SLC16A1, HNF4A and HNF1A) and involved in different metabolic pathways. To elucidate the genetic etiology of CHI in the Italian population, we conducted an extensive sequencing analysis of the CHI-related genes in a large cohort of 36 patients: Twenty-nine suffering from classic hyperinsulinism (HI) and seven from hyperinsulinism-hyperammonemia (HI/HA). Seventeen mutations have been found in fifteen HI patients and five mutations in five HI/HA patients. Our data confirm the major role of ATP-sensitive potassium channel in the pathogenesis of Italian cases (~70%) while the remaining percentage should be attributed to other. A better knowledge of molecular basis of CHI would lead to improve strategies for genetic screening and prenatal diagnosis. Moreover, genetic analysis might also help to distinguish the two histopathological forms of CHI, which would lead to a clear improvement in the treatment and in genetic counseling.
Comments [show]
None has been submitted yet.
No. Sentence Comment
111 Interestingly, altered responses to ATP have been reported when the same residue is replaced by a Valine (p.Gly716Val) (Thomas et al., 1996).
X
ABCC8 p.Gly716Val 23506826:111:108
status: NEW[hide] Pharmacological rescue of trafficking-impaired ATP... Front Physiol. 2013 Dec 24;4:386. doi: 10.3389/fphys.2013.00386. Martin GM, Chen PC, Devaraneni P, Shyng SL
Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels.
Front Physiol. 2013 Dec 24;4:386. doi: 10.3389/fphys.2013.00386., [PMID:24399968]
Abstract [show]
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic beta-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The beta-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
218 Mutation Domain Rescue Rescue Gating References by SU by CBZ property SUR1 G7R TMD0 Yes Yes Normal Yan et al., 2007 N24K TMD0 Yes Yes Normal Yan et al., 2007 F27S TMD0 Yes Yes Normal Yan et al., 2007 R74W TMD0 Yes Yes ATP-insensitive Yan et al., 2007 A116P TMD0 Yes Yes Normal Yan et al., 2004 E128K TMD0 Yes Yes ATP-insensitive Yan et al., 2007 V187D TMD0 Yes Yes Normal Yan et al., 2004 R495Q TMD1 Yes Yes Unknown Yan et al., 2007 E501K TMD1 Yes Yes Unknown Yan et al., 2007 L503P TMD1 No No Unknown Yan et al., 2007 F686S NBD1 No No Unknown Yan et al., 2007 G716V NBD1 No No Unknown Yan et al., 2007 E1324K TMD2 N.D.3 N.D.
X
ABCC8 p.Gly716Val 24399968:218:561
status: NEW