ABCC6 p.Arg600Cys
LOVD-ABCC6: |
p.Arg600Cys
D
|
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Mutation detection in the ABCC6 gene and genotype-... J Med Genet. 2007 Oct;44(10):621-8. Epub 2007 Jul 6. Pfendner EG, Vanakker OM, Terry SF, Vourthis S, McAndrew PE, McClain MR, Fratta S, Marais AS, Hariri S, Coucke PJ, Ramsay M, Viljoen D, Terry PF, De Paepe A, Uitto J, Bercovitch LG
Mutation detection in the ABCC6 gene and genotype-phenotype analysis in a large international case series affected by pseudoxanthoma elasticum.
J Med Genet. 2007 Oct;44(10):621-8. Epub 2007 Jul 6., [PMID:17617515]
Abstract [show]
BACKGROUND: Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder with considerable phenotypic variability, mainly affects the eyes, skin and cardiovascular system, characterised by dystrophic mineralization of connective tissues. It is caused by mutations in the ABCC6 (ATP binding cassette family C member 6) gene, which encodes MRP6 (multidrug resistance-associated protein 6). OBJECTIVE: To investigate the mutation spectrum of ABCC6 and possible genotype-phenotype correlations. METHODS: Mutation data were collected on an international case series of 270 patients with PXE (239 probands, 31 affected family members). A denaturing high-performance liquid chromatography-based assay was developed to screen for mutations in all 31 exons, eliminating pseudogene coamplification. In 134 patients with a known phenotype and both mutations identified, genotype-phenotype correlations were assessed. RESULTS: In total, 316 mutant alleles in ABCC6, including 39 novel mutations, were identified in 239 probands. Mutations were found to cluster in exons 24 and 28, corresponding to the second nucleotide-binding fold and the last intracellular domain of the protein. Together with the recurrent R1141X and del23-29 mutations, these mutations accounted for 71.5% of the total individual mutations identified. Genotype-phenotype analysis failed to reveal a significant correlation between the types of mutations identified or their predicted effect on the expression of the protein and the age of onset and severity of the disease. CONCLUSIONS: This study emphasises the principal role of ABCC6 mutations in the pathogenesis of PXE, but the reasons for phenotypic variability remain to be explored.
Comments [show]
None has been submitted yet.
No. Sentence Comment
262 Genotype-phenotype correlations The comparison of subjects whose mutations would probably have resulted in no functional protein with those whose mutations would probably have resulted in some functional Table 2 Distinct mutations identified in the international case series of 271 patients with PXE Nucleotide change*À Predicted consequenceÀ Frequency (alleles) Exon-intron location Domain affected` Mutant alleles (%) References1 c.105delA p.S37fsX80 2 2 0.6 28 c.177-185del9 p.R60_Y62del 1 2 0.3 9, 28 c.179del12ins3 p. R60_W64del L60_R61ins 1 2 0.3 c.220-1gRc SJ 1 IVS 2 0.3 c.724gRt p.E242X 1 7 0.3 c.938insT FS 1 8 0.3 25 c.998+2delT SJ 1 IVS 8 0.3 2, 21 c.998+2del2 SJ 1 IVS 8 0.3 18 c.951cRg p.S317R 2 9 TM6 0.6 28 c.1087cRt p.Q363X 1 9 0.3 c.1091gRa p.T364R 1 9 TM7 0.3 9, 19, 21, 28 c.1132cRt p.Q378X 4 9 1.2 9, 17-19, 28, 37 c.1144cRt p.R382W 2 9 IC4 0.6 c.1171aRg p.R391G 3 9 IC4 0.9 9, 18, 28, 37 c.1176gRc p.K392N 1 9 IC4 0.3 c.1388tRa p.L463H 1 11 TM9 0.3 c.1484tRa p.L495H 1 12 IC5 0.3 28 c.1552cRt p.R518X 2 12 0.6 18, 19, 27, 28, 37 c.1553gRa p.R518Q 4 12 IC5 1.2 18, 19, 24, 28, 31 c.1603tRc p.S535P 1 12 TM10 0.3 c.1703tRc p.F568S 1 13 TM11 0.3 24 c.1798cRt p.R600C 1 14 TM11 0.3 c.1857insC FS 1 14 0.3 c.1987gRt p.G663C 1 16 NBF1 0.3 c.1999delG FS 1 16 0.3 c.2070+5GRA SJ 2 IVS 16 0.6 c.2093aRc p.Q698P 2 17 NBF1 0.6 c.2097gRt p.E699D 1 17 NBF1 0.3 c.2177tRc p.L726P 1 17 NBF1 0.3 c.2237ins10 FS 2 17 0.6 c.2252tRa p.M751K 1 18 NBF1 0.3 20, 37 c.2263gRa p.G755R 2 18 NBF1 0.6 c.2278cRt p.R760W 3 18 NBF1 0.9 20, 28, 32, 37 c.2294gRa p.R765Q 2 18 NBF1 0.6 20-22, 25, 28, 32, 37 c.2329gRa p.D777N 1 18 NBF1 0.3 c.2359gRt p.V787I 1 18 NBF1 0.3 c.2432cRt p.T811M 1 19 IC6 0.3 6 c.2643gRt p.R881S 1 20 IC6 0.3 c.2787+1GRT SJ 9 IVS 21 2.8 17, 20, 24, 28, 31, 37 c.2814cRg p.Y938X 1 22 0.3 c.2820insC FS 1 22 0.3 c.2831cRt p.T944I 1 22 TM12 0.3 c.2848gRa p.A950T 1 22 TM12 0.3 c.2974gRc p.G992R 1 22 TM13 0.3 2, 42 c.3340cRt p.R1114C 2 24 IC8 0.6 19, 28, 32, 37, 41 c.3389cRt p.T1130M 3 24 IC8 0.9 18, 19, 21, 22, 28, 30, 32, 37, 41 c.3398gRc p.G1133A 1 24 IC8 0.3 c.3412gRa p.R1138W 7 24 IC8 2.2 28, 30, 37 c.3413cRt p.R1138Q 7 24 IC8 2.2 18, 19, 24, 25, 28, 30, 32, 37, 41 c.3415gRa p.A1139T 2 24 IC8 0.6 c.3415gRa & c.2070+5GRA* p.A1139T & SJ 1 24, IVS 16 IC8 0.3 c.3415gRa & c.4335delG* p.A1139T & FS 1 24, 30 IC8 0.3 c.3421cRt p.R1141X 92 24 29.3 5, 9, 15,18, 19, 21, 22, 24, 28, 30-32, 33, 37, 41 c.3427cRt p.Q1143X 1 24 0.3 c.3490cRt p.R1164X 15 24 4.7 18, 27, 28, 31, 33 c.3491gRa p.R1164Q 1 24 IC8 0.3 28 c.3661cRt p.R1221C 1 26 IC9 0.3 21, 22, 28, 29 c.3662gRa p.R1221H 2 26 IC9 0.6 40 c.3676cRa p.L1226I 1 26 IC9 0.3 c.3722gRa p.W1241X 2 26 0.6 c.3774insC FS 2 27 0.6 c.3775delT p.G1259fsX1272 3 27 0.9 15, 25, 28, 41 c.3880-3882del p.K1294del 1 27 0.3 c.3883-5GRA SJ 1 IVS 27 0.3 c.3892gRt p.V1298F 1 28 NBF2 0.3 25 c.3904gRa p.G1302R 7 28 NBF2 2.2 21, 22, 25, 28 c.3907gRc p.A1303P 1 28 NBF2 0.3 21, 22, 25, 28 c.3912delG FS 1 28 0.3 28 c.3940cRt p.R1314W 4 28 NBF2 1.2 24, 25, 32, 36 c.3941gRa p.R1314Q 1 28 NBF2 0.3 25, 28, 32, 36, 41 c.4004tRa p.L1335Q 1 28 NBF2 0.3 c.4015cRt p.R1339C 16 28 NBF2 5.0 19, 25, 28, 33 c.4016gRa p.R1339H 2 28 NBF2 0.6 c.4025tRc p.I1342T 1 28 NBF2 0.3 protein did not yield significant differences.
X
ABCC6 p.Arg600Cys 17617515:262:1191
status: NEW[hide] Novel deletions causing pseudoxanthoma elasticum u... J Hum Genet. 2010 Feb;55(2):112-7. Epub 2010 Jan 15. Costrop LM, Vanakker OO, Van Laer L, Le Saux O, Martin L, Chassaing N, Guerra D, Pasquali-Ronchetti I, Coucke PJ, De Paepe A
Novel deletions causing pseudoxanthoma elasticum underscore the genomic instability of the ABCC6 region.
J Hum Genet. 2010 Feb;55(2):112-7. Epub 2010 Jan 15., [PMID:20075945]
Abstract [show]
Mutations in ABCC6 cause pseudoxanthoma elasticum (PXE), a heritable disease that affects elastic fibers. Thus far, >200 mutations have been characterized by various PCR-based techniques (primarily direct sequencing), identifying up to 90% of PXE-causing alleles. This study wanted to assess the importance of deletions and insertions in the ABCC6 genomic region, which is known to have a high recombinational potential. To detect ABCC6 deletions/insertions, which can be missed by direct sequencing, multiplex ligation-dependent probe amplification (MLPA) was applied in PXE patients with an incomplete genotype. MLPA was performed in 35 PXE patients with at least one unidentified mutant allele after exonic sequencing and exclusion of the recurrent exon 23-29 deletion. Six multi-exon deletions and four single-exon deletions were detected. Using MLPA in addition to sequencing, we expanded the ABCC6 mutation spectrum with 9 novel deletions and characterized 25% of unidentified disease alleles. Our results further illustrate the instability of the ABCC6 genomic region and stress the importance of screening for deletions in the molecular diagnosis of PXE.
Comments [show]
None has been submitted yet.
No. Sentence Comment
68 In contrast, a false positive MLPA result was obtained as a consequence of the presence of a known heterozygous point mutation in the probe-annealing region in patient 6 (c.1798C4T; p.R600C).
X
ABCC6 p.Arg600Cys 20075945:68:184
status: NEW118 )del Yes *, Min. (15164187À17919962) Max. (15062188À18020277) 6 p.Arg600Cys c.1798C4T Exon 14 del.
X
ABCC6 p.Arg600Cys 20075945:118:76
status: NEW