ABCC6 p.Pro664Ser
LOVD-ABCC6: |
p.Pro664Ser
D
|
Predicted by SNAP2: | A: N (61%), C: D (53%), D: D (71%), E: D (71%), F: D (91%), G: D (59%), H: N (72%), I: D (66%), K: D (59%), L: D (71%), M: D (85%), N: N (57%), Q: N (82%), R: N (53%), S: N (66%), T: N (87%), V: D (63%), W: D (91%), Y: D (85%), |
Predicted by PROVEAN: | A: D, C: D, D: N, E: N, F: D, G: D, H: N, I: D, K: N, L: D, M: D, N: N, Q: N, R: N, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Analysis of sequence variations in the ABCC6 gene ... J Vasc Res. 2005 Sep-Oct;42(5):424-32. Epub 2005 Aug 26. Schulz V, Hendig D, Schillinger M, Exner M, Domanovits H, Raith M, Szliska C, Kleesiek K, Gotting C
Analysis of sequence variations in the ABCC6 gene among patients with abdominal aortic aneurysm and pseudoxanthoma elasticum.
J Vasc Res. 2005 Sep-Oct;42(5):424-32. Epub 2005 Aug 26., [PMID:16127278]
Abstract [show]
Abdominal aortic aneurysm (AAA) is characterized by dilatation of arterial walls, which is accompanied by degradation of elastin and collagen molecules. Biochemical and environmental factors are known to be relevant for AAA development, and familial predisposition is well recognized. A connective tissue disorder that is also associated with fragmentation of elastic fibers is Pseudoxanthoma elasticum (PXE). PXE is caused by mutations in the ABCC6 gene and mainly affects dermal, ocular and all vascular tissues. To investigate whether variations in ABCC6 are found in AAA patients and to determine mutations in PXE patients, we analyzed seven selected ABCC6 exons of 133 AAA and 54 PXE patients subjected to mutational analysis. In our cohort of AAA patients, we found five ABCC6 alterations, which result in missense or silent amino acid variants. The allelic frequencies of these sequence variations were not significantly different between AAA patients and healthy controls. Therefore, we suggest that alterations in ABCC6 are not a genetic risk factor for AAA. Mutational screening of the PXE patients revealed 19 different ABCC6 variations, including two novel PXE-causing mutations. These results expand the ABCC6 mutation database in PXE.
Comments [show]
[show]
No. Sentence Comment
113 Novel ABCC6 Sequence Alterations Among the 22 ABCC6 sequence variations found in this study, 17 had been previously described as PXE-causing mutations and ABCC6 polymorphisms [16, 19, 22-24, 30, 35, 36], and 5 were novel DNA alterations resulting in the missense and silent variants p.Q655R, p.P664S, p.R1114C, p.G1311E and p.R1418R.
X
ABCC6 p.Pro664Ser 16127278:113:294
status: NEW116 The variations p.R1114C and p.G1311E occurred in a heterozygous form in 2 PXE patients, and RFLP or DHPLC analysis revealed that they were not present in our groups of healthy controls Exona Sequence variation Allele frequency AAA patients PXE patients PXE relatives blood donors 16 c.1964A>G (p.Q655R) 1 0 0 0/286 16 c.1990C>T (p.P664S) 0 0 0 1/286 16 c.1995delG (frameshift) 0 3 0 0/286 17 c.2171G>A (p.R724K) 3 1 1 2/254 17 c.2175A>T (p.V725V) 3 1 1 2/254 17 c.2224A>G (p.I742V) 3 1 1 2/254 i-17 IVS17+22T>G 1 0 0 0/254 18 c.2252T>A (p.M751K) 0 2 0 0/204 18 c.2278C>T (p.R760W) 0 1 0 0/204 18 c.2294G>A (p.R765Q) 0 3 0 0/204 24 c.3340C>T (p.R1114C) 0 1 0 0/400 24 c.3341G>A (p.R1114H) 0 1 0 0/400 24 c.3389C>T (p.T1130M) 0 2 0 0/400 24 c.3413G>A (p.R1138Q) 0 2 0 ND 24 c.3421C>T (p.R1141X) 0 28 9 1/1,820b i-24 IVS24+15G>A 1 0 0 ND 28 c.3902C>T (p.T1301I) 0 1 0 ND 28 c.3932G>A (p.G1311E) 0 1 0 0/400 28 c.3940C>T (p.R1314W) 0 1 0 ND 28 c.3941G>A (p.R1314Q) 0 1 1 ND i-28 IVS28+49C>T 59 ND ND ND i-28 IVS28-30C>T 48 ND ND ND 29 c.4182delG (frameshift) 0 3 0 0/400 i-29 IVS29+9G>A 5 ND ND ND 30 c.4209C>A (p.S1403R) 0 1 0 0/244 30 c.4254G>A (p.R1418R) 6 0 0 2/244 i-30 IVS30+11C>G 0 2 0 0/244 23-29 Ex23_Ex29del 0 5 3 ND i = intron; ND = not determined.
X
ABCC6 p.Pro664Ser 16127278:116:331
status: NEW124 The p.Q655R and p.P664S mutations were identified in a heterozygous state in only 1 AAA patient and 1 control subject, respectively.
X
ABCC6 p.Pro664Ser 16127278:124:18
status: NEW[hide] Functional hot spots in human ATP-binding cassette... Protein Sci. 2010 Nov;19(11):2110-21. Kelly L, Fukushima H, Karchin R, Gow JM, Chinn LW, Pieper U, Segal MR, Kroetz DL, Sali A
Functional hot spots in human ATP-binding cassette transporter nucleotide binding domains.
Protein Sci. 2010 Nov;19(11):2110-21., [PMID:20799350]
Abstract [show]
The human ATP-binding cassette (ABC) transporter superfamily consists of 48 integral membrane proteins that couple the action of ATP binding and hydrolysis to the transport of diverse substrates across cellular membranes. Defects in 18 transporters have been implicated in human disease. In hundreds of cases, disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs). The functional impact of the majority of ABC transporter nsSNPs has yet to be experimentally characterized. Here, we combine experimental mutational studies with sequence and structural analysis to describe the impact of nsSNPs in human ABC transporters. First, the disease associations of 39 nsSNPs in 10 transporters were rationalized by identifying two conserved loops and a small alpha-helical region that may be involved in interdomain communication necessary for transport of substrates. Second, an approach to discriminate between disease-associated and neutral nsSNPs was developed and tailored to this superfamily. Finally, the functional impact of 40 unannotated nsSNPs in seven ABC transporters identified in 247 ethnically diverse individuals studied by the Pharmacogenetics of Membrane Transporters consortium was predicted. Three predictions were experimentally tested using human embryonic kidney epithelial (HEK) 293 cells stably transfected with the reference multidrug resistance transporter 4 and its variants to examine functional differences in transport of the antiviral drug, tenofovir. The experimental results confirmed two predictions. Our analysis provides a structural and evolutionary framework for rationalizing and predicting the functional effects of nsSNPs in this clinically important membrane transporter superfamily.
Comments [show]
None has been submitted yet.
No. Sentence Comment
72 Predictions of the Functional Effects of 40 nsSNPs in ABC Transporters Comon name HUGO name Mutation NBD Prediction BSEP ABCB11 E592Q NBD1 Neutral BSEP ABCB11 N591S NBD1 Neutral BSEP ABCB11 Q558H NBD1 Neutral BSEP ABCB11 V444A NBD1 Neutral BSEP ABCB11 E1186K NBD2 Disease MDR1 ABCB1 P1051A NBD2 Neutral MDR1 ABCB1 S1141T NBD2 Neutral MDR1 ABCB1 T1256K NBD2 Disease MDR1 ABCB1 V1251I NBD2 Neutral MDR1 ABCB1 W1108R NBD2 Disease MRP2 ABCC2 I670T NBD1 Disease MRP2 ABCC2 L849R NBD1 Disease MRP2 ABCC2 C1515Y NBD2 Disease MRP3 ABCC3 D770N NBD1 Neutral MRP3 ABCC3 K718M NBD1 Neutral MRP3 ABCC3 T809M NBD1 Disease MRP3 ABCC3 V765L NBD1 Disease MRP3 ABCC3 Q1365R NBD2 Disease MRP3 ABCC3 R1297H NBD2 Disease MRP3 ABCC3 R1348C NBD2 Disease MRP3 ABCC3 R1381S NBD2 Disease MRP4 ABCC4 G487E NBD1 Disease MRP4 ABCC4 K498E NBD1 Neutral MRP4 ABCC4 R1220Q NBD2 Neutral MRP4 ABCC4 T1142M NBD2 Neutral MRP4 ABCC4 V1071I NBD2 Neutral MRP6 ABCC6 I1330L NBD1 Neutral MRP6 ABCC6 I742V NBD1 Neutral MRP6 ABCC6 P664S NBD1 Neutral MRP6 ABCC6 R724K NBD1 Neutral MRP6 ABCC6 R769K NBD1 Neutral MRP6 ABCC6 A1291T NBD2 Neutral MRP6 ABCC6 E1369K NBD2 Neutral MRP6 ABCC6 G1327E NBD2 Disease MRP6 ABCC6 L1416R NBD2 Disease MRP6 ABCC6 R1268Q NBD2 Disease MRP6 ABCC6 R1461H NBD2 Disease MXR ABCG2 I206L NBD1 Neutral MXR ABCG2 P269S NBD1 Disease MXR ABCG2 Q141K NBD1 Neutral nsSNPs.
X
ABCC6 p.Pro664Ser 20799350:72:987
status: NEW
aranyi on 2012-05-05 13:15:49