ABCC6 p.Glu125Lys
LOVD-ABCC6: |
p.Glu125*
D
p.Glu125Lys D |
Predicted by SNAP2: | A: D (80%), C: D (66%), D: D (75%), F: D (85%), G: D (85%), H: D (80%), I: D (85%), K: D (91%), L: D (85%), M: D (85%), N: D (75%), P: D (95%), Q: D (85%), R: D (91%), S: D (85%), T: D (85%), V: D (85%), W: D (95%), Y: D (85%), |
Predicted by PROVEAN: | A: D, C: D, D: N, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Molecular genetics of pseudoxanthoma elasticum: ty... Hum Mutat. 2005 Sep;26(3):235-48. Miksch S, Lumsden A, Guenther UP, Foernzler D, Christen-Zach S, Daugherty C, Ramesar RK, Lebwohl M, Hohl D, Neldner KH, Lindpaintner K, Richards RI, Struk B
Molecular genetics of pseudoxanthoma elasticum: type and frequency of mutations in ABCC6.
Hum Mutat. 2005 Sep;26(3):235-48., [PMID:16086317]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a systemic heritable disorder that affects the elastic tissue in the skin, eye, and cardiovascular system. Mutations in the ABCC6 gene cause PXE. We performed a mutation screen in ABCC6 using haplotype analysis in conjunction with direct sequencing to achieve a mutation detection rate of 97%. This screen consisted of 170 PXE chromosomes in 81 families, and detected 59 distinct mutations (32 missense, eight nonsense, and six likely splice-site point mutations; one small insertion; and seven small and five large deletions). Forty-three of these mutations are novel variants, which increases the total number of PXE mutations to 121. While most mutations are rare, three nonsense mutations, a splice donor site mutation, and the large deletion comprising exons 23-29 (c.2996_4208del) were identified as relatively frequent PXE mutations at 26%, 5%, 3.5%, 3%, and 11%, respectively. Chromosomal haplotyping with two proximal and two distal polymorphic markers flanking ABCC6 demonstrated that most chromosomes that carry these relatively frequent PXE mutations have related haplotypes specific for these mutations, which suggests that these chromosomes originate from single founder mutations. The types of mutations found support loss-of-function as the molecular mechanism for the PXE phenotype. In 76 of the 81 families, the affected individuals were either homozygous for the same mutation or compound heterozygous for two mutations. In the remaining five families with one uncovered mutation, affected showed allelic compound heterozygosity for the cosegregating PXE haplotype. This demonstrates pseudo-dominance as the relevant inheritance mechanism, since disease transmission to the next generation always requires one mutant allelic variant from each parent. In contrast to other previous clinical and molecular claims, our results show evidence only for recessive PXE. This has profound consequences for the genetic counseling of families with PXE.
Comments [show]
None has been submitted yet.
No. Sentence Comment
209 Type and Frequency of Polymorphisms in ABCC6 Identi'ed in170 Chromosomes of 81 PXE Familiesà Exon/ Intron Nucleotide substitution Amino acid change Location Frequency (] of families) Referencea E 03 c.232G4A p.A78T ABCC6-C2 81 This study, (C,H) IVS 03 c.345112T4C Intron duplication 81 This study IVS 03 c.345126C4T Intron 1 This study IVS 03 c.346À6G4A Intron 10 This study, (C) E 04 c.373G4A p.E125K ABCC6-C1 81 This study, (C) E 04 c.473C4T p.A158V ABCC6-C2 81 This study, (C) IVS 04 c.474113 G4A Intron duplication 2 This study IVS 04 c.474143C4T Intron duplication 80 This study, (C) IVS 04 c.475À76A4C Intron duplication 81 This study IVS 04 c.475À45C4T Intron 3 This study IVS 04 c.475À22T4C Intron duplication 80 This study, (C) E 05 c.549G4A L183L ABCC6 2 This study, (E) IVS 05 c.600123C4T Intron 1 This study E 06 c.645G4A T215T ABCC6 8 This study, (C) IVS 06 c.662112C4T Intron 1 This study, (C) E 07 c.793A4G R265G ABCC6-C1 81 This study, (C,H) IVS 07 c.794136A4C Intron duplication 81 This study, (C) E 08 c.841A4G K281E ABCC6-Cx 81 This study, (H) E 08 c.855C4T T285T ABCC6-C1 81 This study, (C) E 08 c.955A4G I319V ABCC6-Cx 81 This study, (H) E 09 c.1077A4G S359S ABCC6, ABCC6-C1 1 This study, (C,H) E 09 c.1132C4T Q378X ABCC6-C1 81 This study, (C,H) E 09 c.1141T4C L381L ABCC6, ABCC6-C1 81 This study, (C,H) IVS 09 c.117616C4T No SSM Intron 1 This study E 10 c.1233T4C N411N ABCC6 1 This study, (B,L) E 10 c.1245G4A V415V ABCC6 Frequent This study, (B,L) IVS 10 c.133817C4G Intron Frequent This study IVS 10 c.1338120C4G Intron Frequent This study IVS 10 c.1338162G4C Intron Frequent This study IVS 11 c.1432À41A4G Intron Frequent This study, (E) E 12 c.1540G4A V514I ABCC6 1 This study IVS 12 c.1635147C4T Intron Frequent This study E 14 c.1841T4C V614A ABCC6 Frequent This study, (B,E) IVS 14 c.1868À57G4A Intron 3 This study E 15 c.1890C4G T630T ABCC6 Frequent This study, (B,L) E 15 c.1896C4A H632Q ABCC6 Frequent This study, (C,G) E 17 c.2171G4A R724K ABCC6 2 This study E 17 c.2175A4T V725V ABCC6 2 This study E 17 c.2224A4G I742V ABCC6 2 This study E 19 c.2490C4T A830A ABCC6 Frequent This study, (E) E 22 c.2820T4G R940R ABCC6 1 This study E 22 c.2835C4T P945P ABCC6 8 This study, (J) E 22 c.2836C4A L946I ABCC6 3 This study E 22 c.2904G4A L968L ABCC6 1 This study, (J) E 23 c.3190C4T R1064W ABCC6 2 This study IVS 24 c.3507À16T4C No SSM Intron 4 This study IVS 24 c.3507À3C4T No SSM Intron 3 This study E 27 c.3803G4A R1268Q ABCC6 Frequent This study, (C,M) IVS 27 c.3883À24G4A Intron 1 This study IVS 28 c.4041149C4T Intron Frequent This study, (E) IVS 28 c.4042À30C4T Intron Frequent This study IVS 29 c.420819G4A Intron 2 This study E 30 c.4305C4T G1435G ABCC6 1 This study IVS 30 c.4405À31G4A Intron Frequent This study 30 UTR c.4512117G4A UTR 5 This study, (E) 30 UTR c.4512138G4A UTR 1 This study ÃDNA mutation numbering is based on the ABCC6 cDNA sequence (GenBank accession no. AF076622.1) and 11 corresponds to the A of the ATG translation initiation codon of the reference sequence.
X
ABCC6 p.Glu125Lys 16086317:209:406
status: NEW157 Search for MutationsWithin the Duplicated Region (50 UTR, exons 1^ 9) of ABCC6 In the first round of mutation screening (see Materials and Methods, and Supplementary Table S5), sequencing of the PCR products and comparative analysis of the sequencing reads revealed frequent polymorphisms and potential mutations (p.A78T, p.E125K, p.A158V, p.R265G, p.K281E, and p.I319V p.Q378X) (see Tables 1 and 2) that appeared in all families and initially did not cosegregate with familial haplotypes, which suggests that they are likely pseudogene polymorphisms.
X
ABCC6 p.Glu125Lys 16086317:157:324
status: NEW169 For the pseudogene polymorphisms p.A78Tand p.E125K, which occur at highly conserved amino acid positions of ABCC6, we could not demonstrate novel gene conversion events in our families between ABCC6 and its two known pseudogenes; however, we did unmask a G-to-T nucleotide substitution at position c.373 that resulted in premature termination of the protein at amino acid position 125 (p.E125X).
X
ABCC6 p.Glu125Lys 16086317:169:45
status: NEW[hide] Novel clinico-molecular insights in pseudoxanthoma... Hum Mutat. 2008 Jan;29(1):205. Vanakker OM, Leroy BP, Coucke P, Bercovitch LG, Uitto J, Viljoen D, Terry SF, Van Acker P, Matthys D, Loeys B, De Paepe A
Novel clinico-molecular insights in pseudoxanthoma elasticum provide an efficient molecular screening method and a comprehensive diagnostic flowchart.
Hum Mutat. 2008 Jan;29(1):205., [PMID:18157818]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a heritable connective tissue disorder characterized by ocular, cutaneous and cardiovascular manifestations. It is caused by mutations in the ABCC6 gene (chr. 16p13.1), encoding a transmembrane transporter protein, the substrate and biological function of which are currently unknown. A comprehensive clinical and molecular study of 38 Belgian PXE probands and 21 relatives (4 affected and 17 carriers) was performed. An extensive clinical evaluation protocol was implemented with serial fundus, skin and cardiovascular evaluation. We report on 14 novel mutations in the ABCC6 gene. We observed extensive variability in severity of both cutaneous and ocular lesions. The type of skin lesion however usually remained identical throughout the evolution of the disorder, while ophthalmological progression was mainly due to functional decline. Peripheral artery disease (53%) and stroke (15%) were significantly more prevalent than in the general population (10-30% and 0.3-0.5% respectively). Interestingly, we also observed a relatively high incidence of subclinical peripheral artery disease (41%) in our carrier population. We highlight the significance of peripheral artery disease and stroke in PXE patients as well as the subclinical manifestations in carriers. Through follow-up data we gained insight into the natural history of PXE. We propose a cost- and time-efficient two-step method of ABCC6 analysis which can be used in different populations. Additionally, we created a diagnostic flowchart and attempted to define the role of molecular analysis of ABCC6 in the work-up of a PXE patient.
Comments [show]
None has been submitted yet.
No. Sentence Comment
83 Genotype and Phenotype of 42 Belgian PXE Patients Patient S e x Age/Clinical score at initial presentation Age/Clinical score at most recent follow-up Mutations* Allele 1 Allele 2 01-001 F 52 - S0, E2 65 - S0, E3, HT p.R1141X c.3421C>T p.R760Q c.2279G>A 02-001 M 18 - S1, E2, VR-I 18 - S1, E2, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 03-001 F 59 - S1, E4 75 - S1, E4, HT, IC, VR-I p.R1141X c.3421C>T p.N793L c.2379C>G 04-001 F 36 - S3, E2 36 - S3, E2 p.N466Y c.1396A>T p.R1339H c.4016G>A 05-001 F 26 - S1, E4 43 - S3, E4, VR-I p.R1141X c.3421C>T p.T364M c.1091C>T 06-001 F 36 - S2, E4 44 - S2, E4, P p.A1303P c.3907G>C None found - 07-001 M 48 - S1, E2, HT 58 - S1, E4, HT p.R1141X c.3421C>T p.R1141X c.3421C>T 08-001 F 26 - S1, E0 44 - S2, E2 p.R1141X c.3421C>T p.R760Q c.2279G>A 09-001 M 49 - S0, E3, P, GIB 65 - S2, E4, P, HT, VR-I, GIB p.A1303P c.3907G>C None found - 10-001 F 46 - S1, E2 63 - S3, E4, HT, AP,VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 11-001 M 25 - S1, E2, GIB 37 - S1, E3, GIB p.R1141X c.3421C>T None found - 12-001 F 52 - S1, E4, CI, HT, VR-I 52 - S1, E4, IC, HT, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 12-002 F 40 - S1, E2, HT, MVP, VR-I 40 - S1, E2, HT, MVP, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 13-001 F 65 - S0, E2 80 - S0, E2, P, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 13-002 F 57 - S3, E4 73 - S3, E4, HT, CI, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 14-001 F 23 - S1, E2 27 - S1, E2 p.S398R c.1194C>G - c.3364delT 15-001 F 27 - S1, E2 27 - S1, E2 p.R1138W c.3412C>T p.R1221H c.3662G>A 16-001 M 51 - S2, E2 54 - S2, E2 p.R1141X c.3421C>T p.R1141X c.3421C>T 17-001 M 42 - S1, E3, IC 58 - S1, E3, IC Del23-29 - p.R518Q c.1553G>A 18-001 M 63 - S1, E4 63 - S1, E4 p.E1400K c.4198G>A None found - 19-001 F 34 - S2, E2 50 - S2, E2 p.A1303P c.3907G>C p.R1398X c.4192C>T 20-001 F 52 - S2, E2, HT, IC, GIB 68 - S2, E4, HT, IC, GIB p.R1141X c.3421C>T None found - 21-001 M 20 - S1, E2 26 - S1, E2 p.R1141X c.3421C>T p.R1141X c.3421C>T 22-001 M 53 - S2, E2, IC, AP 69 - S2, E2, HT, IC, AP p.M751K c.2252T>A p.R1164Q c.3491G>A 23-001 F 20 - S1, E2 27 - S1, E2, P, VR-I p.G666V c.1996G>T - c.1868-5T>G 24-001 M 54 - S1, E2 57 - S1, E2 p.T500P c.1498A>C p.E521D c.1563G>C 25-001 F 50 - S1, E3, HT, MI 57 - S2, E3, HT, MI p.R1141X c.3421C>T p.R1141X c.3421C>T 26-001 M 52 - S2, E4, HT 68 - S2, E4, HT, CI p.M751K c.2252T>A Del23-29 - 27-001 F 61 - S3, E4 68 - S3, E4, P, CI, AP p.R1141X c.3421C>T - c.4104delC Allele 2 28-001 F 31 - S1, E2 32 - S1, E2 - c.1674DelC p.R765W c.2293C>T Patient S e x Age/Clinical score at initial presentation Age/Clinical score at most recent follow-up Mutations* Allele 1 Allele 2 29-001 M 30 - S1, E3 32 - S1, E3 p.E125K c.373G>A p.L1025P c.3074T>C 30-001 M 65 - S0, E2, HT, CI, MI 66 - S0, E2, HT, CI, MI p.G1405S c.4213G>A None found - 31-001 F 38 - S1, E4 39 - S1, E4 p.R1141X c.3421C>T Del23-29 - 32-001 M 22 - S1, E2 36 - S1, E2 p.R1141X c.3421C>T p.R518Q c.1553G>A 33-001 F 45 - S2, E3, P 61 - S2, E3, P, VR-II p.R1141X c.3421C>T p.R1141X c.3421C>T 34-001 F 65 - S1, E4, HT 81 - S1, E4, HT, AP p.R1141X c.3421C>T p.T1301I c.3902C>T 35-001 F 62 - S2, E2 78 - S2, E2, HT - c.175_179del p.G1354R c.4060G>C 35-002 F 58 - S2, E2 74 - S2, E4 - c.175_179del p.G1354R c.4060G>C 35-003 M 67 - S2, E2 79 - S2, E3, HT, VR-I - c.175_179del p.G1354R c.4060G>C 36-001 M 53 - S1, E4 59 - S1, E4, HT, AP p.R1114H c.3341G>A p.Q1237X c.3709C>T 37-001 M 18 - S3, E2 18 - S3, E2 p.Q981H c.2943G>T - c.3507-3C>A 38-001 F 27 - S1, E2 27 - S1, E2 p.G1263R c.3787G>A - c.4182delG Table 1 represents the sex of all patients (M = male; F= female) and the age (in years - italics), respectively at initial presentation and last follow-up.
X
ABCC6 p.Glu125Lys 18157818:83:2684
status: NEW[hide] Added value of infrared, red-free and autofluoresc... Br J Ophthalmol. 2010 Apr;94(4):479-86. Epub 2009 Sep 1. De Zaeytijd J, Vanakker OM, Coucke PJ, De Paepe A, De Laey JJ, Leroy BP
Added value of infrared, red-free and autofluorescence fundus imaging in pseudoxanthoma elasticum.
Br J Ophthalmol. 2010 Apr;94(4):479-86. Epub 2009 Sep 1., [PMID:19726431]
Abstract [show]
PURPOSE: Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder caused by mutations in the ABCC6 gene and primarily affects the oculocutaneous and cardiovascular systems. However, the phenotype, including the ophthalmological manifestations, varies in severity. The present study aims to evaluate the added value of novel funduscopic imaging techniques, such as near-infrared reflectance, red-free and autofluorescence imaging in PXE. METHODS: In 22 molecularly proven PXE patients and 25 obligate carriers, PXE retinopathy was evaluated using funduscopy, white light, red-free, infrared and autofluorescence imaging. RESULTS: At least one characteristic of PXE retinopathy was evident on funduscopy of all eyes. Angioid streaks could be subdivided in those with (brick red) or without (feathered) adjacent RPE alterations. Infrared imaging showed the brick-red-coloured streaks as well-demarcated dark fissures, even when these passed unnoticed on funduscopy. Feathered types were detected as triangular areas of hypoautofluorescence. The peau d'orange was much more visible and much more widespread on infrared imaging, with extension from the posterior pole towards the whole midperiphery. Comets and comet tails were best seen with red-free imaging. CONCLUSIONS: Infrared, red-free and autofluorescence imaging are more sensitive than white light funduscopy and imaging in visualising early retinal signs of PXE. In addition, this specialised imaging allows a better appreciation of the extent of lesions. Hence, such imaging increases the chances of making a correct diagnosis early, and aids in the accurate evaluation of evolution of disease in the ophthalmic follow-up of PXE patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
78 In 55% of fundi (24/44), the Table 1 Ophthalmological characteristics of patients Case Age, sex Eye BCVA AS Pd`O C(T) ODD NV PDT Anti-VEGF ABCC6 mutations 1 61, F OD 2/10 + + + À + + À p.R1459C/e OS 9/10 + + + À + + À 2 43, F OD 12/10 + + + À À À À p.R1141X/p.R1141X OS 12/10 + + + À À À À 3 35, M OD 11/10 + + + À À À À p.E125K/p.L1025P OS 1/300 + + + À + + + 4 21, M OD 10/10 + + + À À À À p.R1141X/p.R1141X OS 10/10 + + + + À À À 5 11, M OD 10/10 À + + À À À À c.3506+2T/C/e 3506+2T/COS 10/10 À + + À À À À 6 55, F OD 1/20 + + + À + À À p.R1141X/p.R1141X OS 1.5/10 + + + À + À À 7 40, M OD 4/10 + + + À + + À p.R265G/p.R1141X OS 1/10 + + + À + + À 8 22, F OD 10/10 + + + À À À À p.R1141X/p.R1141X OS 10/10 + + + À À À À 9 29, F OD 10/10 + + + À À À À p.G1263R/c.4182delGG OS 10/10 + + + À À À À 10 20, M OD 10/10 + + + + À À À c.3507-3C/A/p.T944I OS 10/10 + + + + À À À 11 37, F OD 10/10 + + + + À À À p.Q154R/e OS 9/10 + + + + À À À 12 66, F OD 1/20 + À À À + À À p.R1141X/p.R1141X OS 1/10 + À À À + À À 13 68, F OD 10/10 + À À À À À À p.R760Q/p.R1141X OS 10/10 + À À À À À À 14 68, M OD 2/10 + À + À + À À p.A1303P/p.L946I OS CF + À + À + À À 15 58, F OD 7/10 + + + À + À + p.R1141X/c.4103delC OS CF + + + À + + À 16 62,M OD 1/20 + + + À + À + p.R1141X/p.Q1237X OS CF + + + À + À À 17 47, F OD 10/10 + À À À À À À c.3506+2T/C/e OS 10/10 + À À À À À À 18 54, F OD 10/10 + + + À + À + p.R1141X/p.A1303P OS 10/10 + + + À À À À 19 30, F OD 10/10 + + + À À À À p.S398R/c.3364delT OS 10/10 + + + À À À À 20 39, F OD 12/10 + + + À À À À p.R1141X/e OS 10/10 + + + À À À À 21 30, F OD 10/10 + + + À À À À p.G666R/c.1868-5T/G OS 10/10 + + + + À À À 22 34, M OD 12/10 + + + À À À À c.3364delT/p.R518X OS 12/10 + + + À À À À anti-VEGF, anti-vascular endothelial growth factor antibodies; AS, angioid streaks; BCVA, best-corrected visual acuity (Snellen); CF, counting fingers; C(T), Comet (tails); F, female; M, male; MD, macular degeneration; NV, neovascularisation; ODD, optic disc drusen; Pd`O, Peau d`Orange; PDT, photodynamic therapy.
X
ABCC6 p.Glu125Lys 19726431:78:403
status: NEW[hide] Membrane insertion and topology of the amino-termi... FEBS Lett. 2015 Dec 21;589(24 Pt B):3921-8. doi: 10.1016/j.febslet.2015.10.030. Epub 2015 Nov 3. Cuviello F, Tellgren-Roth A, Lara P, Ruud Selin F, Monne M, Bisaccia F, Nilsson I, Ostuni A
Membrane insertion and topology of the amino-terminal domain TMD0 of multidrug-resistance associated protein 6 (MRP6).
FEBS Lett. 2015 Dec 21;589(24 Pt B):3921-8. doi: 10.1016/j.febslet.2015.10.030. Epub 2015 Nov 3., [PMID:26545497]
Abstract [show]
The function of the ATP-binding cassette transporter MRP6 is unknown but mutations in its gene cause pseudoxanthoma elasticum. We have investigated the membrane topology of the N-terminal transmembrane domain TMD0 of MRP6 and the membrane integration and orientation propensities of its transmembrane segments (TMs) by glycosylation mapping. Results demonstrate that TMD0 has five TMs, an Nout-Cin topology and that the less hydrophobic TMs have strong preference for their orientation in the membrane that affects the neighboring TMs. Two disease-causing mutations changing the number of positive charges in the loops of TMD0 did not affect the membrane insertion efficiencies of the adjacent TMs.
Comments [show]
None has been submitted yet.
No. Sentence Comment
39 R60GY deletion was introduced in constructs where TM1 is in LepH2 and in LepH3 and E125K was introduced in constructs where TM3 and TM4 are in both Lep model proteins.
X
ABCC6 p.Glu125Lys 26545497:39:83
status: NEW128 TMD0 TMs Predicted DG (kcal/mol) Membrane insertion efficiency (%) Measured DG (kcal/mol) Positive charges H2 H3 H2 H3 N-term C-term TM1 Q16-K72 0.707 82 72 0.87 0.56 1 4 TM2 H57-P102 0.922 86 87 1.08 1.03 4 1 TM3 K93-Q131 1.628 54 72 0.09 0.56 1 3 TM4 H123-R166 1.029 92 31 1.45 0.47 3 1 TM5 N150-T206 0.020 93 86 1.52 1.05 1 0 TM1-DR60GY 0.707 85 71 1.03 0.52 1 3 TM3-E125K 1.628 48 80 0.05 0.82 1 4 TM4-E125K 1.029 92 38 1.43 0.30 4 1 F. Cuviello et al. / FEBS Letters xxx (2015) xxx-xxx 5 displayed cleaved fragments and it contains a SignalP predicted cleavage site between A187 and D188 of the original TMD0-L0 sequence.
X
ABCC6 p.Glu125Lys 26545497:128:370
status: NEWX
ABCC6 p.Glu125Lys 26545497:128:406
status: NEW147 The deletion of R60GY [43] in the C-terminal flanking region of TM1 was introduced in the Lep constructs with TM1 and the E125K mutation [44] in the loop between TM3 and TM4 was introduced in Lep constructs with TM3 and TM4.
X
ABCC6 p.Glu125Lys 26545497:147:122
status: NEW165 The R60GY deletion that reduce the number of positively charged residues in the C-terminal cytoplasmic flanking region of TM1 and the E125K substitution that adds a positive charge in the short cytoplasmic loop between TM3 and TM4 both cause PXE.
X
ABCC6 p.Glu125Lys 26545497:165:134
status: NEW168 The E125K mutation increases the positive charge difference between the cytosolic and lumenal sides of TM3 and TM4 from 3 against 1 to 4 against 1 and therefore in theory this substitution increases their natural topological preferences.
X
ABCC6 p.Glu125Lys 26545497:168:4
status: NEW