ABCB1 p.Phe335Cys
Predicted by SNAP2: | A: D (71%), C: D (63%), D: D (85%), E: D (85%), G: D (75%), H: D (85%), I: D (63%), K: D (91%), L: D (66%), M: N (53%), N: D (75%), P: D (91%), Q: D (80%), R: D (91%), S: D (75%), T: D (80%), V: D (66%), W: D (75%), Y: D (71%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] The topography of transmembrane segment six is alt... J Biol Chem. 2004 Aug 13;279(33):34913-21. Epub 2004 Jun 10. Rothnie A, Storm J, Campbell J, Linton KJ, Kerr ID, Callaghan R
The topography of transmembrane segment six is altered during the catalytic cycle of P-glycoprotein.
J Biol Chem. 2004 Aug 13;279(33):34913-21. Epub 2004 Jun 10., 2004-08-13 [PMID:15192095]
Abstract [show]
Structural evidence has demonstrated that P-glycoprotein (P-gp) undergoes considerable conformational changes during catalysis, and these alterations are important in drug interaction. Knowledge of which regions in P-gp undergo conformational alterations will provide vital information to elucidate the locations of drug binding sites and the mechanism of coupling. A number of investigations have implicated transmembrane segment six (TM6) in drug-P-gp interactions, and a cysteine-scanning mutagenesis approach was directed to this segment. Introduction of cysteine residues into TM6 did not disturb basal or drug-stimulated ATPase activity per se. Under basal conditions the hydrophobic probe coumarin maleimide readily labeled all introduced cysteine residues, whereas the hydrophilic fluorescein maleimide only labeled residue Cys-343. The amphiphilic BODIPY-maleimide displayed a more complex labeling profile. The extent of labeling with coumarin maleimide did not vary during the catalytic cycle, whereas fluorescein maleimide labeling of F343C was lost after nucleotide binding or hydrolysis. BODIPY-maleimide labeling was markedly altered during the catalytic cycle and indicated that the adenosine 5'-(beta,gamma-imino)triphosphate-bound and ADP/vanadate-trapped intermediates were conformationally distinct. Our data are reconciled with a recent atomic scale model of P-gp and are consistent with a tilting of TM6 in response to nucleotide binding and ATP hydrolysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
106 Only the F335C isoform was consistently outside this range (p Ͻ 0.05, n Ͼ 10) and exhibited a yield of 28 Ϯ 6 g of P-gp.
X
ABCB1 p.Phe335Cys 15192095:106:9
status: NEW130 Values refer to the mean Ϯ S.E. obtained from at least eight independent protein purification preparations. P-gp isoform Substrate affinity , Km Maximal activity, Vmax -Fold stimulationBasal Stimulated Basal Stimulated mM mol Pi min-1 mg protein-1 Cys-less 0.58 Ϯ 0.06 0.38 Ϯ 0.04 0.58 Ϯ 0.15 1.46 Ϯ 0.30 2.9 Ϯ 0.3 V331C 0.50 Ϯ 0.06 0.26 Ϯ 0.02 0.45 Ϯ 0.05 1.54 Ϯ 0.20 3.5 Ϯ 0.3 T333C 0.49 Ϯ 0.05 0.23 Ϯ 0.02 0.35 Ϯ 0.04 1.22 Ϯ 0.15 3.3 Ϯ 0.1 F335C 0.40 Ϯ 0.05 0.24 Ϯ 0.03 0.65 Ϯ 0.15 1.61 Ϯ 0.31 2.2 Ϯ 0.2 S337C 0.53 Ϯ 0.06 0.26 Ϯ 0.04 0.59 Ϯ 0.10 1.67 Ϯ 0.23 3.2 Ϯ 0.4 L339C 0.51 Ϯ 0.07 0.31 Ϯ 0.04 0.57 Ϯ 0.07 1.47 Ϯ 0.15 2.9 Ϯ 0.3 G341C 0.40 Ϯ 0.04 0.24 Ϯ 0.02 0.42 Ϯ 0.03 1.12 Ϯ 0.09 3.1 Ϯ 0.5 F343C 0.41 Ϯ 0.04 0.26 Ϯ 0.03 0.47 Ϯ 0.04 1.17 Ϯ 0.15 2.6 Ϯ 0.3 generate stable covalent bonds with thiol groups under physiological conditions.
X
ABCB1 p.Phe335Cys 15192095:130:547
status: NEW154 Isoforms V331C, T333C, F335C, S337C, L339C, and G341C displayed labeling extents in the range 7-12%, and none was significantly different from the Cys-less isoform (ANOVA).
X
ABCB1 p.Phe335Cys 15192095:154:23
status: NEW163 Isoforms T333C, F335C, S337C, and G341C did not label with BM since the Lext values (19-27%) were not signif- TABLE II Potency of drugs that affect the ATPase activity of purified reconstituted single cysteine mutants of P-gp Pure, reconstituted P-gp (0.3 g) was incubated in the presence of ATP (2 mM) and varying concentrations of nicardipine, vinblastine, or vanadate.
X
ABCB1 p.Phe335Cys 15192095:163:16
status: NEW166 Values refer to the mean Ϯ S.E. obtained from a minimum of three independent protein purification preparations. P-gp isoform Potency of drug effect Nicardipine, EC50 Vinblastine, EC50 Vanadate, IC50 M M M Cys-less 3.2 Ϯ 0.3 4.2 Ϯ 0.6 4.0 Ϯ 0.4 V331C 3.3 Ϯ 0.4 7.2 Ϯ 1.7 3.2 Ϯ 0.4 T333C 2.3 Ϯ 0.2 4.6 Ϯ 0.4 3.9 Ϯ 0.8 F335C 2.3 Ϯ 0.4 4.2 Ϯ 0.8 5.5 Ϯ 1.1 S337C 2.7 Ϯ 0.5 4.1 Ϯ 1.0 5.8 Ϯ 0.8 L339C 2.1 Ϯ 0.3 5.1 Ϯ 0.8 4.2 Ϯ 0.7 G341C 3.9 Ϯ 0.5 4.0 Ϯ 0.6 6.8 Ϯ 1.3 F343C 2.1 Ϯ 0.3 5.6 Ϯ 2.7 2.7 Ϯ 0.8 FIG. 1.
X
ABCB1 p.Phe335Cys 15192095:166:400
status: NEW217 Two isoforms, F335C and G341C, could not be labeled by BM under any conditions and presumably lie in a region with low accessibility due to proximity of other structural elements.
X
ABCB1 p.Phe335Cys 15192095:217:14
status: NEW[hide] Transmembrane helix 12 modulates progression of th... Biochemistry. 2009 Jul 7;48(26):6249-58. Crowley E, O'Mara ML, Reynolds C, Tieleman DP, Storm J, Kerr ID, Callaghan R
Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1.
Biochemistry. 2009 Jul 7;48(26):6249-58., 2009-07-07 [PMID:19456124]
Abstract [show]
Multidrug efflux pumps, such as P-glycoprotein (ABCB1), present major barriers to the success of chemotherapy in a number of clinical settings. Molecular details of the multidrug efflux process by ABCB1 remain elusive, in particular, the interdomain communication associated with bioenergetic coupling. The present investigation has focused on the role of transmembrane helix 12 (TM12) in the multidrug efflux process of ABCB1. Cysteine residues were introduced at various positions within TM12, and their effect on ATPase activity, nucleotide binding, and drug interaction were assessed. Mutation of several residues within TM12 perturbed the maximal ATPase activity of ABCB1, and the underlying cause was a reduction in basal (i.e., drug-free) hydrolysis of the nucleotide. Two of the mutations (L976C and F978C) were found to reduce the binding of [gamma-(32)P]-azido-ATP to ABCB1. In contrast, the A980C mutation within TM12 enhanced the rate of ATP hydrolysis; once again, this was due to modified basal activity. Several residues also caused reductions in the potency of stimulation of ATP hydrolysis by nicardipine and vinblastine, although the effects were independent of changes in drug binding per se. Overall, the results indicate that TM12 plays a key role in the progression of the ATP hydrolytic cycle in ABCB1, even in the absence of the transported substrate.
Comments [show]
None has been submitted yet.
No. Sentence Comment
207 However, unlike the TM12 F978C mutation, the TM6 F335C mutation does not cause a significant reduction in ATPase activity (15).
X
ABCB1 p.Phe335Cys 19456124:207:49
status: NEW[hide] Inhibition of oxidative cross-linking between engi... J Biol Chem. 1996 Nov 1;271(44):27482-7. Loo TW, Clarke DM
Inhibition of oxidative cross-linking between engineered cysteine residues at positions 332 in predicted transmembrane segments (TM) 6 and 975 in predicted TM12 of human P-glycoprotein by drug substrates.
J Biol Chem. 1996 Nov 1;271(44):27482-7., 1996-11-01 [PMID:8910331]
Abstract [show]
Each homologous half of P-glycoprotein consists of a transmembrane domain with six potential transmembrane segments and an ATP-binding domain. Labeling studies with photoactive drug analogs show that labeling occurs within or close to predicted transmembrane segments (TM) 6 (residues 331-351) and TM12 (residues 974-994). To test if these segments are in near-proximity we generated 42 different P-glycoprotein mutants in which we re-introduced a pair of cysteine residues into a Cys-less P-glycoprotein, one within TM6 (residues 332-338) and one within TM12 (residues 975-980) and assayed for cross-linking between the cysteines. All the mutants retained verapamil-stimulated ATPase activity. We found that only the mutant containing Cys-332 and Cys-975 was cross-linked in the presence of oxidant as judged by its decreased mobility on SDS gels. Similar results were obtained when the same mutations were introduced into Cys-less NH2-terminal and COOH-terminal half-molecules of P-glycoprotein followed by coexpression and treatment with oxidant. Cross-linking between Cys-332 and Cys-975, however, was inhibited by verapamil or vinblastine but not by colchicine. These results suggest that residues Cys-332 and Cys-975, which occupy equivalent positions when TM6 and TM12 are aligned, are close to each other in the tertiary structure of P-glycoprotein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
66 Accordingly, site-directed mutagenesis was used to change the codon for each residue surrounding Phe-335 and Phe-978 to cysteine (Fig. 1B).
X
ABCB1 p.Phe335Cys 8910331:66:97
status: NEW156 A, membranes prepared from cells transfected with vector alone (control) or cotransfected with cDNA for mutant L332C in the Cys-less NH2-terminal half-molecule A52 and the cDNA for mutant L975C in the Cys-less COOH-terminal half-molecule A52 or with cDNA for mutant F335C in the NH2-terminal half-molecule A52 and the cDNA for mutant F978C in the COOH-terminal half-molecule A52 were treated with oxidant for various intervals and at different temperatures.
X
ABCB1 p.Phe335Cys 8910331:156:266
status: NEW[hide] Drug-stimulated ATPase activity of human P-glycopr... J Biol Chem. 1997 Aug 22;272(34):20986-9. Loo TW, Clarke DM
Drug-stimulated ATPase activity of human P-glycoprotein requires movement between transmembrane segments 6 and 12.
J Biol Chem. 1997 Aug 22;272(34):20986-9., 1997-08-22 [PMID:9261097]
Abstract [show]
Transmembrane segments (TM) 6 and 12 are directly connected to the ATP-binding domain in each homologous half of P-glycoprotein and are postulated to be important for drug-protein interactions. Cysteines introduced into TM6 (L332C, F343C, G346C, and P350C) were oxidatively cross-linked to cysteines introduced into TM12 (L975C, M986C, G989C, and S993C, respectively). The pattern of cross-linking was consistent with a left-handed coiled coil arrangement of the two helices. To detect conformational changes between the helices during drug-stimulated ATPase activity, we tested the effects of substrates and ATP on cross-linking. Cyclosporin A, verapamil, vinblastine, and colchicine inhibited cross-linking of mutants F343C/M986C, G346C/G989C, and P350C/S993C. By contrast, ATP promoted cross-linking between only L332C/L975C. Enhanced cross-linking between L332C/L975C was due to ATP hydrolysis, since cross-linked product was not observed in the presence of ATP and vanadate, ADP, ADP and vanadate, or AMP-PNP. Cross-linking between P350C/S993C inhibited verapamil-stimulated ATPase activity by about 75%. Drug-stimulated ATPase activity, however, was fully restored in the presence of dithiothreitol. These results show that TM6 and TM12 undergo different conformational changes upon drug binding or during ATP hydrolysis, and that movement between these two helices is essential for drug-stimulated ATPase activity.
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 We also tested mutants F335C/L976C, L339C/S979C, F343C/F983C, G347C/A987C, and S351C/ V991C for cross-linking since they were predicted to lie on opposing faces of TM6 and TM12 modeled in a right-handed coiled-coil.
X
ABCB1 p.Phe335Cys 9261097:80:23
status: NEW[hide] Identification of residues in the drug-binding sit... J Biol Chem. 1997 Dec 19;272(51):31945-8. Loo TW, Clarke DM
Identification of residues in the drug-binding site of human P-glycoprotein using a thiol-reactive substrate.
J Biol Chem. 1997 Dec 19;272(51):31945-8., 1997-12-19 [PMID:9405384]
Abstract [show]
We identified a thiol-reactive compound, dibromobimane (dBBn), that was a potent stimulator (8.2-fold) of the ATPase activity of Cys-less P-glycoprotein. We then used this compound together with cysteine-scanning mutagenesis to identify residues in transmembrane segment (TM) 6 and TM12 that are important for function. TM6 and TM12 lie close to each other in the tertiary structure and are postulated to be important for drug-protein interactions. The majority of P-glycoprotein mutants containing a single cysteine residue retained substantial amounts of drug-stimulated ATPase activity and were not inhibited by dBBn. The ATPase activities of mutants L339C, A342C, L975C, V982C, and A985C, however, were markedly inhibited (>60%) by dBBn. The drug substrates verapamil, vinblastine, and colchicine protected these mutants against inhibition by dBBn, suggesting that these residues are important for interaction of substrates with P-glycoprotein. We previously showed that residues Leu339, Ala342, Leu975, Val982, and Ala985 lie along the point of contact between helices TM6 and TM12, when both are aligned in a left-handed coiled coil (Loo, T. W., and Clarke, D. M. (1997) J. Biol. Chem. 272, 20986-20989). Taken together, these results suggest that the interface between TM6 and TM12 likely forms part of the potential drug-binding pocket in P-glycoprotein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
81 One mutant, F335C (TM6) showed enhanced activity (280%), whereas the equivalent residue in TM12 (F978C) showed decreased activity (31%).
X
ABCB1 p.Phe335Cys 9405384:81:12
status: NEW[hide] The coupling mechanism of P-glycoprotein involves ... FEBS Lett. 2005 Jul 18;579(18):3984-90. Rothnie A, Storm J, McMahon R, Taylor A, Kerr ID, Callaghan R
The coupling mechanism of P-glycoprotein involves residue L339 in the sixth membrane spanning segment.
FEBS Lett. 2005 Jul 18;579(18):3984-90., [PMID:16004994]
Abstract [show]
The transmembrane (TM) domains in P-glycoprotein (P-gp) contain the drug binding sites and undergo conformational changes driven by nucleotide catalysis to effect translocation. However, our understanding of exactly which regions are involved in such events remains unclear. A site-directed labelling approach was used to attach thiol-reactive probes to cysteines introduced into transmembrane segment 6 (TM6) in order to perturb function and infer involvement of specific residues in drug binding and/or interdomain communication. Covalent attachment of coumarin-maleimide at residue 339C within TM6 resulted in impaired ATP hydrolysis by P-gp. The nature of the effect was to reduce the characteristic modulation of basal activity caused by transported substrates, modulators and the potent inhibitor XR9576. Photoaffinity labelling of P-gp with [(3)H]-azidopine indicated that residue 339C does not alter drug binding per se. However, covalent modification of this residue appears to prevent conformational changes that lead to drug stimulation of ATP hydrolysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
94 The half-lives for reaction of introduced cysteine residues with CM varied from 23 ± 1 min obtained for L339C to 52 ± 3 min for the F335C isoform.
X
ABCB1 p.Phe335Cys 16004994:94:142
status: NEW93 The half-lives for reaction of introduced cysteine residues with CM varied from 23 &#b1; 1 min obtained for L339C to 52 &#b1; 3 min for the F335C isoform.
X
ABCB1 p.Phe335Cys 16004994:93:140
status: NEW