ABCC7 p.Val956Cys
Predicted by SNAP2: | A: N (53%), C: N (72%), D: D (85%), E: D (80%), F: D (71%), G: D (75%), H: D (80%), I: N (97%), K: D (85%), L: N (78%), M: N (61%), N: D (75%), P: D (85%), Q: D (80%), R: D (85%), S: D (59%), T: D (53%), W: D (85%), Y: D (80%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: N, K: D, L: N, M: N, N: D, P: D, Q: D, R: D, S: D, T: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] The inhibition mechanism of non-phosphorylated Ser... J Biol Chem. 2011 Jan 21;286(3):2171-82. Epub 2010 Nov 8. Wang G
The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2011 Jan 21;286(3):2171-82. Epub 2010 Nov 8., 2011-01-21 [PMID:21059651]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette transporters but serves as a chloride channel dysfunctional in cystic fibrosis. The activity of CFTR is tightly controlled not only by ATP-driven dimerization of its nucleotide-binding domains but also by phosphorylation of a unique regulatory (R) domain by protein kinase A (PKA). The R domain has multiple excitatory phosphorylation sites, but Ser(737) and Ser(768) are inhibitory. The underlying mechanism is unclear. Here, sulfhydryl-specific cross-linking strategy was employed to demonstrate that Ser(768) or Ser(737) could interact with outwardly facing hydrophilic residues of cytoplasmic loop 3 regulating channel gating. Furthermore, mutation of these residues to alanines promoted channel opening by curcumin in an ATP-dependent manner even in the absence of PKA. However, mutation of Ser(768) and His(950) with different hydrogen bond donors or acceptors clearly changed ATP- and PKA-dependent channel activity no matter whether curcumin was present or not. More importantly, significant activation of a double mutant H950R/S768R needed only ATP. Finally, in vitro and in vivo single channel recordings suggest that Ser(768) may form a putative hydrogen bond with His(950) of cytoplasmic loop 3 to prevent channel opening by ATP in the non-phosphorylated state and by subsequent cAMP-dependent phosphorylation. These observations support an electron cryomicroscopy-based structural model on which the R domain is closed to cytoplasmic loops regulating channel gating.
Comments [show]
None has been submitted yet.
No. Sentence Comment
121 However, S768C could not form an inhibitory disulfide bond with V956C (inwardly facing) or K946C, possibly as a result of a long distance or a poor relative orientation (Fig. 2E).
X
ABCC7 p.Val956Cys 21059651:121:64
status: NEW127 In contrast, the H950C/V956C mutant exhibited no X-linked band possibly because of a poor relative orientation between H954C and V956C.
X
ABCC7 p.Val956Cys 21059651:127:23
status: NEWX
ABCC7 p.Val956Cys 21059651:127:129
status: NEW