ABCC7 p.Asp836Cys
ClinVar: |
c.2506G>T
,
p.Asp836Tyr
?
, not provided
|
CF databases: |
c.2506G>T
,
p.Asp836Tyr
(CFTR1)
?
, This mutation was found in a French adult patient. The defect on the other chromosome is not yet characterized.
|
Predicted by SNAP2: | A: N (72%), C: N (57%), E: N (93%), F: D (63%), G: D (53%), H: N (57%), I: D (53%), K: N (66%), L: N (66%), M: N (53%), N: N (57%), P: D (66%), Q: N (82%), R: D (59%), S: N (61%), T: N (82%), V: N (53%), W: N (53%), Y: N (53%), |
Predicted by PROVEAN: | A: N, C: D, E: N, F: D, G: N, H: N, I: D, K: N, L: D, M: D, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] State-dependent regulation of cystic fibrosis tran... J Biol Chem. 2010 Dec 24;285(52):40438-47. Epub 2010 Oct 15. Wang G
State-dependent regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gating by a high affinity Fe3+ bridge between the regulatory domain and cytoplasmic loop 3.
J Biol Chem. 2010 Dec 24;285(52):40438-47. Epub 2010 Oct 15., 2010-12-24 [PMID:20952391]
Abstract [show]
The unique regulatory (R) domain differentiates the human CFTR channel from other ATP-binding cassette transporters and exerts multiple effects on channel function. However, the underlying mechanisms are unclear. Here, an intracellular high affinity (2.3 x 10(-19) M) Fe(3+) bridge is reported as a novel approach to regulating channel gating. It inhibited CFTR activity by primarily reducing an open probability and an opening rate, and inhibition was reversed by EDTA and phenanthroline. His-950, His-954, Cys-832, His-775, and Asp-836 were found essential for inhibition and phosphorylated Ser-768 may enhance Fe(3+) binding. More importantly, inhibition by Fe(3+) was state-dependent. Sensitivity to Fe(3+) was reduced when the channel was locked in an open state by AMP-PNP. Similarly, a K978C mutation from cytoplasmic loop 3 (CL3), which promotes ATP-independent channel opening, greatly weakened inhibition by Fe(3+) no matter whether NBD2 was present or not. Therefore, although ATP binding-induced dimerization of NBD1-NBD2 is required for channel gating, regulation of CFTR activity by Fe(3+) may involve an interaction between the R domain and CL3. These findings may support proximity of the R domain to the cytoplasmic loops. They also suggest that Fe(3+) homeostasis may play a critical role in regulating pathophysiological CFTR activity because dysregulation of this protein causes cystic fibrosis, secretary diarrhea, and infertility.
Comments [show]
None has been submitted yet.
No. Sentence Comment
155 Similarly, disulfide bond cross-linking of H950C or H954C to S832C, H775C, or D836C also inhibited channel activity, whereas single cysteine mutants were not affected by diamide (Fig. 5F and supplemental Fig. S1).
X
ABCC7 p.Asp836Cys 20952391:155:78
status: NEW