ABCC7 p.His954Ala
ClinVar: |
c.2861A>C
,
p.His954Pro
?
, not provided
|
CF databases: |
c.2861A>C
,
p.His954Pro
(CFTR1)
?
,
|
Predicted by SNAP2: | A: N (87%), C: N (87%), D: N (82%), E: N (93%), F: N (53%), G: N (82%), I: N (78%), K: N (93%), L: N (82%), M: N (82%), N: N (93%), P: N (61%), Q: N (93%), R: N (93%), S: N (93%), T: N (93%), V: N (82%), W: D (53%), Y: N (61%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: D, I: D, K: N, L: D, M: D, N: N, P: D, Q: N, R: N, S: N, T: N, V: D, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] State-dependent regulation of cystic fibrosis tran... J Biol Chem. 2010 Dec 24;285(52):40438-47. Epub 2010 Oct 15. Wang G
State-dependent regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gating by a high affinity Fe3+ bridge between the regulatory domain and cytoplasmic loop 3.
J Biol Chem. 2010 Dec 24;285(52):40438-47. Epub 2010 Oct 15., 2010-12-24 [PMID:20952391]
Abstract [show]
The unique regulatory (R) domain differentiates the human CFTR channel from other ATP-binding cassette transporters and exerts multiple effects on channel function. However, the underlying mechanisms are unclear. Here, an intracellular high affinity (2.3 x 10(-19) M) Fe(3+) bridge is reported as a novel approach to regulating channel gating. It inhibited CFTR activity by primarily reducing an open probability and an opening rate, and inhibition was reversed by EDTA and phenanthroline. His-950, His-954, Cys-832, His-775, and Asp-836 were found essential for inhibition and phosphorylated Ser-768 may enhance Fe(3+) binding. More importantly, inhibition by Fe(3+) was state-dependent. Sensitivity to Fe(3+) was reduced when the channel was locked in an open state by AMP-PNP. Similarly, a K978C mutation from cytoplasmic loop 3 (CL3), which promotes ATP-independent channel opening, greatly weakened inhibition by Fe(3+) no matter whether NBD2 was present or not. Therefore, although ATP binding-induced dimerization of NBD1-NBD2 is required for channel gating, regulation of CFTR activity by Fe(3+) may involve an interaction between the R domain and CL3. These findings may support proximity of the R domain to the cytoplasmic loops. They also suggest that Fe(3+) homeostasis may play a critical role in regulating pathophysiological CFTR activity because dysregulation of this protein causes cystic fibrosis, secretary diarrhea, and infertility.
Comments [show]
None has been submitted yet.
No. Sentence Comment
142 Consistent with involvement of CL3, another neighboring mutant H954A from CL3 was also amelioratory to Fe3ϩ (Fig. 4E), and its activity was increased by curcumin dramatically (data not shown).
X
ABCC7 p.His954Ala 20952391:142:63
status: NEW145 In support of this proposal, H950A/H954A and D836A/C832A/ H774A completely prevented Fe3ϩ inhibition, which was reversed by EDTA (Fig. 4E).
X
ABCC7 p.His954Ala 20952391:145:35
status: NEW[hide] The inhibition mechanism of non-phosphorylated Ser... J Biol Chem. 2011 Jan 21;286(3):2171-82. Epub 2010 Nov 8. Wang G
The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2011 Jan 21;286(3):2171-82. Epub 2010 Nov 8., 2011-01-21 [PMID:21059651]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette transporters but serves as a chloride channel dysfunctional in cystic fibrosis. The activity of CFTR is tightly controlled not only by ATP-driven dimerization of its nucleotide-binding domains but also by phosphorylation of a unique regulatory (R) domain by protein kinase A (PKA). The R domain has multiple excitatory phosphorylation sites, but Ser(737) and Ser(768) are inhibitory. The underlying mechanism is unclear. Here, sulfhydryl-specific cross-linking strategy was employed to demonstrate that Ser(768) or Ser(737) could interact with outwardly facing hydrophilic residues of cytoplasmic loop 3 regulating channel gating. Furthermore, mutation of these residues to alanines promoted channel opening by curcumin in an ATP-dependent manner even in the absence of PKA. However, mutation of Ser(768) and His(950) with different hydrogen bond donors or acceptors clearly changed ATP- and PKA-dependent channel activity no matter whether curcumin was present or not. More importantly, significant activation of a double mutant H950R/S768R needed only ATP. Finally, in vitro and in vivo single channel recordings suggest that Ser(768) may form a putative hydrogen bond with His(950) of cytoplasmic loop 3 to prevent channel opening by ATP in the non-phosphorylated state and by subsequent cAMP-dependent phosphorylation. These observations support an electron cryomicroscopy-based structural model on which the R domain is closed to cytoplasmic loops regulating channel gating.
Comments [show]
None has been submitted yet.
No. Sentence Comment
143 In contrast, curcumin had no such effect on S737A and H954A mutants, suggesting that they may be weak inhibitory residues, although disulfide cross-linking of S737C to H954C strongly inhibited channel activity (Figs. 2E and 4E).
X
ABCC7 p.His954Ala 21059651:143:54
status: NEW144 Because curcumin increased initial channel activity of most mutants at the R-CL3 interface after ATP was present, it is reasonable that subsequent PKA dependence was greatly reduced except for S737A and H954A.
X
ABCC7 p.His954Ala 21059651:144:203
status: NEW234 Error bars, S.E. TABLE 1 Potential roles in hydrogen bonding at the CL3-R domain interface Note that mutants whose channel activity was increased by curcumin in the presence of ATP are highlighted in boldface type. Residues Role in H-bond Mutants Arg Strong donor H950R, S768R, H950R/S768R, H950R/S768D, H950D/S768R Asp Strong acceptor H950D, S768D, H950D/S768D, H950R/S768D, H950D/S768R Thr, Gln, Ser, His Donor/Acceptor H950Q, S768T, WT Ala Negative control K946A, H950A, K951A, H954A, S955A, Q958A, S737A, S768A, ⌬R Inhibition of CFTR by Ser768 JANUARY 21, 2011•VOLUME 286•NUMBER 3 JOURNAL OF BIOLOGICAL CHEMISTRY 2177 matter whether cAMP was present or not in the extracellular perfusate.
X
ABCC7 p.His954Ala 21059651:234:481
status: NEW313 Similarly, His954 could not form an inhibitory H-bond with Ser768 because H954A was not dramatically activated by a combination of ATP and curcumin (Fig. 4E).
X
ABCC7 p.His954Ala 21059651:313:74
status: NEW