ABCC7 p.Arg117Gly
ClinVar: |
c.350G>C
,
p.Arg117Pro
?
, not provided
c.349C>G , p.Arg117Gly ? , not provided c.350G>T , p.Arg117Leu ? , not provided c.349C>T , p.Arg117Cys D , Pathogenic c.350G>A , p.Arg117His D , Pathogenic |
CF databases: |
c.350G>A
,
p.Arg117His
?
, Varying clinical consequence ; CFTR1:
c.349C>T , p.Arg117Cys D , CF-causing ; CFTR1: The haplotype is 2-1-1-2 (XV2c-KM19-D9-J44) with seven GATT repeats. The mutation creates a new Bsml site. c.349C>G , p.Arg117Gly (CFTR1) ? , Was reported previously in one study of CBAVD. R117G/UND 7T/9T (Daudin et al., Fertility and Sterility, 74:1164-1174, 2000). c.350G>C , p.Arg117Pro (CFTR1) ? , A new missense mutation was found in exon 4 : R 117 P. The mutation was detected by DGGE analysis and identified by remplacement of an arginine residue by a proline at codon 117. The mutation creates new MnlI and NlaIV sites. The mutation was identified in one french CF chromosome. The patient has a mild lung disease and is sufficient pancreatic. c.350G>T , p.Arg117Leu (CFTR1) ? , This mutation was identified by DGGE and direct sequencing and was identified on one CF chromosome of Italian origin. |
Predicted by SNAP2: | A: D (91%), C: D (63%), D: D (95%), E: D (95%), F: D (91%), G: D (95%), H: N (53%), I: D (85%), K: D (95%), L: D (63%), M: D (85%), N: D (95%), P: D (66%), Q: D (95%), S: D (95%), T: D (95%), V: D (91%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: N, G: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, S: N, T: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] A new complex allele of the CFTR gene partially ex... Genet Med. 2010 Sep;12(9):548-55. Lucarelli M, Narzi L, Pierandrei S, Bruno SM, Stamato A, d'Avanzo M, Strom R, Quattrucci S
A new complex allele of the CFTR gene partially explains the variable phenotype of the L997F mutation.
Genet Med. 2010 Sep;12(9):548-55., [PMID:20706124]
Abstract [show]
PURPOSE: To evaluate the role of complex alleles, with two or more mutations in cis position, of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in the definition of the genotype-phenotype relationship in cystic fibrosis (CF), and to evaluate the functional significance of the highly controversial L997F CFTR mutation. METHODS: We evaluated the diagnosis of CF or CFTR-related disorders in 12 unrelated subjects with highly variable phenotypes. According to a first CFTR mutational analysis, subjects appeared to be compound heterozygotes for a classic mutation and the L997F mutation. A further CFTR mutational analysis was conducted by means of a protocol of extended sequencing, particularly suited to the detection of complex alleles. RESULTS: We detected a new [R117L; L997F] CFTR complex allele in the four subjects with the highest sweat test values and CF. The eight subjects without the complex allele showed the most varied biochemical and clinical outcome and were diagnosed as having mild CF, CFTR-related disorders, or even no disease. CONCLUSIONS: The new complex allele partially explains the variable phenotype in CF subjects with the L997F mutation. CFTR complex alleles are likely to have a role in the definition of the genotype-phenotype relationship in CF. Whenever apparently identical CFTR-mutated genotypes are found in subjects with divergent phenotypes, an extensive mutational search is mandatory.
Comments [show]
None has been submitted yet.
No. Sentence Comment
108 Five different CFTR mutations of the 117 CFTR amino acid are known: R117C, R117G, R117H, R117L, and R117P.37 All these mutations have previously been reported to be more likely to cause CFTR-RD than CF.13,37,46,56 However, R117H and R117C have been shown to yield high sweat test values and CF, even severe, if cis-acting with the T5 variant tract in CFTR intron 8.45,46 If we bear in mind that the pH range of airway surface fluid is pH 6.7-7.0,57,58 these mutations of the R117 CFTR residue represent both conservative and nonconservative substitutions.
X
ABCC7 p.Arg117Gly 20706124:108:75
status: NEW[hide] Validation of high-resolution DNA melting analysis... J Mol Diagn. 2008 Sep;10(5):424-34. Epub 2008 Aug 7. Audrezet MP, Dabricot A, Le Marechal C, Ferec C
Validation of high-resolution DNA melting analysis for mutation scanning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene.
J Mol Diagn. 2008 Sep;10(5):424-34. Epub 2008 Aug 7., [PMID:18687795]
Abstract [show]
High-resolution melting analysis of polymerase chain reaction products for mutation scanning, which began in the early 2000s, is based on monitoring of the fluorescence released during the melting of double-stranded DNA labeled with specifically developed saturation dye, such as LC-Green. We report here the validation of this method to scan 98% of the coding sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We designed 32 pairs of primers to amplify and analyze the 27 exons of the gene. Thanks to the addition of a small GC-clamp at the 5' ends of the primers, one single melting domain and one identical annealing temperature were obtained to co-amplify all of the fragments. A total of 307 DNA samples, extracted by the salt precipitation method, carrying 221 mutations and 21 polymorphisms, plus 20 control samples free from variations (confirmed by denaturing high-performance liquid chromatography analysis), was used. With the conditions described in this study, 100% of samples that carry heterozygous mutations and 60% of those with homozygous mutations were identified. The study of a cohort of 136 idiopathic chronic pancreatitis patients enabled us to prospectively evaluate this technique. Thus, high-resolution melting analysis is a robust and sensitive single-tube technique for screening mutations in a gene and promises to become the gold standard over denaturing high-performance liquid chromatography, particularly for highly mutated genes such as CFTR, and appears suitable for use in reference diagnostic laboratories.
Comments [show]
None has been submitted yet.
No. Sentence Comment
171 Results of CFTR Analysis by HRM on 136 Samples of Patients with Idiopathic Chronic Pancreatitis (ICP) Exon Number of positive samples Mutations identified Variants identified New positive controls 1 14 14 125GϾC 2 1 1 R31C 3 9 1 G85E 7 R75Q 1 R74W 4 4 1 R117G 1 I148T R117G 1 R117H 1 A120T 5 1 1 L188P L188P 6a 5 1 V201M 1 A221A A221A 3 875ϩ40 AϾG 6b 27 1 M284T 26 1001ϩ11CϾT M284T 7 1 1 L320V L320V 8 0 0 9 1 1 D443Y 10 16 8 F508del 8 E528E 11 1 1 G542X 12 6 4 G576A 1 Y577Y L568F 1 L568F 13 7 1 S737F 4 R668C S737F 1 V754M L644L 1 L644L 14a 53 52 T854T T854TϩI853I 1 T854TϩI853I 14b 0 0 15 3 1 L967S T908S 1 T908S 1 S945L 16 0 0 17a 10 7 L997F 1 3271ϩ18CϾT 3271 ϩ 3AϾG 1 3271 ϩ 3 AϾG 1 Y1014C 17b 3 1 L1096L L1096L 1 H1054DϩG1069R 1 3272-33AϾG H1054DϩG1069R 3272-33AϾG 18 2 1 D1152H E1124del 1 E1124del 19 5 5 S1235R poly 20 7 1 W1282X 5 P1290P 1 D1270N 21 2 1 N1303K 1 T1299T 22 0 0 23 1 0 4374ϩ13 AϾG 24 43 40 Q1463Q 2 Y1424Y 1 Q1463QϩY1024Y ing domain of a gene brings an excellent sensitivity for heterozygote detection that is very close to 100%.
X
ABCC7 p.Arg117Gly 18687795:171:260
status: NEWX
ABCC7 p.Arg117Gly 18687795:171:274
status: NEW[hide] Spectrum of CFTR mutations in cystic fibrosis and ... Hum Mutat. 2000;16(2):143-56. Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD
Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France.
Hum Mutat. 2000;16(2):143-56., [PMID:10923036]
Abstract [show]
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
49 Nine additional patients who reported with renal malformations, including two heterozygotes for G1069R and R117G, respectively, were excluded from the calculations.
X
ABCC7 p.Arg117Gly 10923036:49:107
status: NEW152 Twenty-four non F508del mutations were found associated with the 9T allele: 394delTT, L90S, D110H, R117G, 621+1G>T, V232D, A455E, G542X, R851L, T908N, 2789+5G>A, 2896insAG, H939R, 3007delG, I980K, I1027T, R1066H, A1067T, D1154G, 3737delA, R74W+D1270N, N1303I, N1303K, D1377H.
X
ABCC7 p.Arg117Gly 10923036:152:99
status: NEW