ABCC7 p.Gly1244Val
ClinVar: |
c.3731G>A
,
p.Gly1244Glu
D
, Pathogenic
c.3730G>A , p.Gly1244Arg ? , not provided c.3731G>T , p.Gly1244Val ? , not provided |
CF databases: |
c.3731G>A
,
p.Gly1244Glu
D
, CF-causing ; CFTR1: This missense mutation was detected in an Italian PI patient through DGGE screening and direct sequencing. The nucleotide changeis G3863-A and generates a Gly to Glu substitution in codon 1244. As a result the recognition site for MboII starting at nucleotide 3863 is destroyed. The mutation was found only once out of 110 non-[delta]F508 Italian CF chromosomes analyzed in Paris by the DGGE technique and it was not found in 45 non-[delta]F508 CF French chromosomes.
c.3730G>A , p.Gly1244Arg (CFTR1) ? , This mutation was identified on one Italian CF chromosome, applying a protocol of extended mutational search (5?-flanking region, all the exons and adjacent intronic regions) by direct sequencing. No other mutations were found on the same allele. The mutation 3849+10KbCtoT was found on the other allele. The G1244R mutation was not found in 232 alleles from the general population. c.3731G>T , p.Gly1244Val (CFTR1) ? , This mutation in exon 20 reults in the substitution of valine for glycine at amino acid position 1244 (G1244V). The mutation was detected by SSCP analysis of exon 20 followed by direct sequencing. The nucleotide substitution abolishes an MboII restriction site. G1244V was detected in a single CF allele out of 105 non-[delta]F508 CF chromosomes screened. It has not been found on any of the 50 normal alleles screened. The mutation was found in the maternal CF allele in a patient of Bulgarian ehtnic background. The chromosomal haplotype is 2/1/1/16/31/13 (XV-2c/KM.19/d9/IVS8-CA/IVS17b-TA/IVS17b-CA). The paternal CF chromosome carries the G542X mutation. |
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (66%), F: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] A new complex allele of the CFTR gene partially ex... Genet Med. 2010 Sep;12(9):548-55. Lucarelli M, Narzi L, Pierandrei S, Bruno SM, Stamato A, d'Avanzo M, Strom R, Quattrucci S
A new complex allele of the CFTR gene partially explains the variable phenotype of the L997F mutation.
Genet Med. 2010 Sep;12(9):548-55., [PMID:20706124]
Abstract [show]
PURPOSE: To evaluate the role of complex alleles, with two or more mutations in cis position, of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in the definition of the genotype-phenotype relationship in cystic fibrosis (CF), and to evaluate the functional significance of the highly controversial L997F CFTR mutation. METHODS: We evaluated the diagnosis of CF or CFTR-related disorders in 12 unrelated subjects with highly variable phenotypes. According to a first CFTR mutational analysis, subjects appeared to be compound heterozygotes for a classic mutation and the L997F mutation. A further CFTR mutational analysis was conducted by means of a protocol of extended sequencing, particularly suited to the detection of complex alleles. RESULTS: We detected a new [R117L; L997F] CFTR complex allele in the four subjects with the highest sweat test values and CF. The eight subjects without the complex allele showed the most varied biochemical and clinical outcome and were diagnosed as having mild CF, CFTR-related disorders, or even no disease. CONCLUSIONS: The new complex allele partially explains the variable phenotype in CF subjects with the L997F mutation. CFTR complex alleles are likely to have a role in the definition of the genotype-phenotype relationship in CF. Whenever apparently identical CFTR-mutated genotypes are found in subjects with divergent phenotypes, an extensive mutational search is mandatory.
Comments [show]
None has been submitted yet.
No. Sentence Comment
103 In vivo findings and, in some cases, in vitro functional characterizations have been reported for [F508C; S1251N],38 [R347H; D979A],39,40 [R74W; D1270N],41 [G628R; S1235R],42,43 [M470V; S1235R],42 [S912L; G1244V],44 [R117H; (TG)mTn],45-47 [R117C; (TG)mTn],46 [S1235R; (TG)mT5],48 [G576A; R668C],10,49 [V562I; A1006E],49 [R352W; P750L],49 [1198_1203del TGGGCT; 1204GϾA],49 [V754M; CFTRdele3_10,14b_16],50 and [F508del; I1027T].51 These complex alleles have been found in patients with either CF or CFTR-RD, although more often in the former.
X
ABCC7 p.Gly1244Val 20706124:103:205
status: NEW[hide] A neutral variant involved in a complex CFTR allel... Hum Genet. 2005 May;116(6):454-60. Epub 2005 Mar 3. Clain J, Lehmann-Che J, Girodon E, Lipecka J, Edelman A, Goossens M, Fanen P
A neutral variant involved in a complex CFTR allele contributes to a severe cystic fibrosis phenotype.
Hum Genet. 2005 May;116(6):454-60. Epub 2005 Mar 3., [PMID:15744523]
Abstract [show]
In order to further elucidate the contribution of complex alleles to the wide phenotypic variability of cystic fibrosis (CF), we investigated the structure-function relationships of a severe CF-associated complex allele [p.S912L;p.G1244V]. To evaluate the contribution of each mutation to the phenotype, cystic fibrosis transmembrane conductance regulator (CFTR) mutants were expressed in HeLa cells and analysed for protein processing and Cl- channel activity. Both p.G1244V and [p.S912L;p.G1244V] mutants had normal protein processing but markedly decreased Cl- channel activity compared with wild-type. Notably, the double mutant displayed a dramatic decrease in Cl- channel activity compared with p.G1244V (P<0.001). p.S912L had normal protein processing and no detectable impact on CFTR function. In other respects, the p.S912L variation was identified in compound heterozygosity with p.R709X in a healthy fertile man. Together, these data strongly support the view that p.S912L in isolation should be considered as a neutral variant but one that might significantly impair CFTR function when inherited in cis with another CFTR mutation. Our data also further document the contribution of complex alleles to the wide phenotypic variability of CF. The results of functional studies of such complex alleles in other genetic diseases are discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
2 Both p.G1244V and [p.S912L;p.G1244V] mutants had normal protein processing but markedly decreased ClÀ channel activity compared with wild-type.
X
ABCC7 p.Gly1244Val 15744523:2:7
status: NEW3 Notably, the double mutant displayed a dramatic decrease in ClÀ channel activity compared with p.G1244V (P<0.001).
X
ABCC7 p.Gly1244Val 15744523:3:102
status: NEW17 Surprisingly, the combination of p.S912L and p.G1244V decreases J. Clain Æ J. Lehmann-Che Æ E. Girodon M. Goossens Æ P. Fanen (&) Service de Biochimie et Ge´ ne´ tique, Hoˆ pital Henri Mondor, Institut National de la Sante´ et de la Recherche Me´ dicale U.468, AP-HP, 94010 Cre´ teil, France E-mail: pascale.fanen@im3.inserm.fr Tel.: +33-1-49812854 Fax: +33-1-48993345 J. Lipecka Æ A. Edelman Faculte´ de Me´ decine Necker, Institut National de la Sante´ et de la Reche0rche Me´ dicale U.467, 156 Rue de Vaugirard, 75015 Paris, France Hum Genet (2005) 116: 454-460 DOI 10.1007/s00439-004-1246-z cAMP-dependent ClÀ channel activity compared with p.G1244V, highlighting the deleterious effect exerted by polymorphisms on the phenotype when combined in cis with a mutation.
X
ABCC7 p.Gly1244Val 15744523:17:47
status: NEWX
ABCC7 p.Gly1244Val 15744523:17:724
status: NEW56 Results Processing of CFTR mutants To analyse the processing and ClÀ channel activity of p.S912L, p.G1244V and [p.S912L;p.G1244V] mutant proteins, wild-type and mutant CFTR alleles were expressed in HeLa cells.
X
ABCC7 p.Gly1244Val 15744523:56:105
status: NEW63 The kinetics of core-glycosylated and mature forms of mutant CFTRs were nearly identical to those of the wild-type, indicating that p.S912L, p.G1244V and [p.S912L;p.G1244V] mutations did not affect maturation of the CFTR protein.
X
ABCC7 p.Gly1244Val 15744523:63:143
status: NEW76 Unlike p.S912L, the p.G1244V and [p.S912L; p.G1244V] CFTR transfected cells showed a marked decrease in cAMP-stimulated ClÀ conductance compared with wild-type (43% and 2.4% of responsive cells, respectively vs.
X
ABCC7 p.Gly1244Val 15744523:76:22
status: NEWX
ABCC7 p.Gly1244Val 15744523:76:45
status: NEW79 Surprisingly, whereas the p.S912L mutation had no detectable impact on CFTR function, the [p.S912L;p.G1244V] complex allele showed an almost 20-fold reduction in cAMP-dependent conductive pathway compared with the p.G1244V deleterious mutant (2.4% of responsive cells vs.
X
ABCC7 p.Gly1244Val 15744523:79:216
status: NEW81 Discussion Clinical data suggest that the combination of p.S912L and p.G1244V mutations in cis ([p.S912L;p.G1244V] complex allele) produces a severe CF phenotype similar to that of p.F508del homozygotes.
X
ABCC7 p.Gly1244Val 15744523:81:71
status: NEW85 In this study, we have Fig. 2 a-d Pulse-chase experiments showing the turnover of the immature and mature forms of wild-type and the mutant CFTR proteins (representative of two independent experiments) Table 1 Summary of MEQ fluorescence assay results from mock-transfected, wild-type and mutant cells Statistic DFstim-DFbasal Mock Wild-type p.S912L p.G1244V [p.S912L;p.G1244V] n 28 64 36 53 42 Mean 0.002 0.023 0.036 0.005 0.001 SEM 0.001 0.017 0.028 0.005 0.001 Range 0-0.005 0-0.340 0-0.140 0-0.034 0-0.006 provided functional and clinical evidence that the p.S912L mutation is not a disease-causing mutation on the basis of the following data.
X
ABCC7 p.Gly1244Val 15744523:85:352
status: NEW95 Taken together, these data support the view that the p.G1244V mutation is a disease-causing mutation.
X
ABCC7 p.Gly1244Val 15744523:95:55
status: NEW96 Surprisingly, the p.G1244V and [p.S912L;p.G1244V] alleles affect in vitro ClÀ channel function in different ways.
X
ABCC7 p.Gly1244Val 15744523:96:20
status: NEW97 This might indicate that p.S912L and p.G1244V mutations occurring on the same allele cause severe structural alterations worsening the effect of the p.G1244V mutation on CFTR function.
X
ABCC7 p.Gly1244Val 15744523:97:39
status: NEWX
ABCC7 p.Gly1244Val 15744523:97:151
status: NEW99 An important consequence of our observation is that when a patient or an asymptomatic relative carries the p.S912L mutation, the p.G1244V mutation should be sought in order to exclude a CF allele; this is important for genetic counselling.
X
ABCC7 p.Gly1244Val 15744523:99:131
status: NEW[hide] Spectrum of mutations in the CFTR gene in cystic f... Ann Hum Genet. 2007 Mar;71(Pt 2):194-201. Alonso MJ, Heine-Suner D, Calvo M, Rosell J, Gimenez J, Ramos MD, Telleria JJ, Palacio A, Estivill X, Casals T
Spectrum of mutations in the CFTR gene in cystic fibrosis patients of Spanish ancestry.
Ann Hum Genet. 2007 Mar;71(Pt 2):194-201., [PMID:17331079]
Abstract [show]
We analyzed 1,954 Spanish cystic fibrosis (CF) alleles in order to define the molecular spectrum of mutations in the CFTR gene in Spanish CF patients. Commercial panels showed a limited detection power, leading to the identification of only 76% of alleles. Two scanning techniques, denaturing gradient gel electrophoresis (DGGE) and single strand conformation polymorphism/hetroduplex (SSCP/HD), were carried out to detect CFTR sequence changes. In addition, intragenic markers IVS8CA, IVS8-6(T)n and IVS17bTA were also analyzed. Twelve mutations showed frequencies above 1%, p.F508del being the most frequent mutation (51%). We found that eighteen mutations need to be studied to achieve a detection level of 80%. Fifty-one mutations (42%) were observed once. In total, 121 disease-causing mutations were identified, accounting for 96% (1,877 out of 1,954) of CF alleles. Specific geographic distributions for the most common mutations, p.F508del, p.G542X, c.1811 + 1.6kbA > G and c.1609delCA, were confirmed. Furthermore, two other relatively common mutations (p.V232D and c.2789 + 5G > A) showed uneven geographic distributions. This updated information on the spectrum of CF mutations in Spain will be useful for improving genetic testing, as well as to facilitate counselling in people of Spanish ancestry. In addition, this study contributes to defining the molecular spectrum of CF in Europe, and corroborates the high molecular mutation heterogeneity of Mediterranean populations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
52 Mutation 0.46-0.35 9 c.1078delT #, p.R347P # 8 p.G85V, c.621 + 1G > T #, p.S549R (T > G) #, p.R553X #, c.3849 + 10kbC > T # 7 p.R347H #, c.1812-1G > A, p.R709X 0.30-0.10 6 p.H199Y, p.P205S, 5 p.R117H #, p.G551D #, p.W1089X, p.Y1092X, CFTR50kbdel 4 c.296 + 3insT, c.1717-1G > A #, c.1949del84, c.3849 + 1G > A 3 p.E92K, c.936delTA, c.1717-8G > A, c.1341G > A, p.A561E, c.2603delT, p.G1244E, [p.D1270N; p.R74W] 2 p.Q2X, p.P5L, CFTRdele2,3, p.S50P, p.E60K, c.405 + 1G > A, c.1677delTA, p.L558S, p.G673X, p.R851X, p.Y1014C, p.Q1100P, p.M1101K, p.D1152H, CFTRdele19, p.G1244V, p.Q1281X, p.Y1381X <0,1 1 c.124del23bp, p.Q30X, p.W57X, c.406-1G > A, p.Q98R, p.E115del, c.519delT, p.L159S, c.711 + 3A > T, p.W202X, c.875 + 1G > A, p.E278del, p.W361R, c.1215delG, p.L365P, p.A399D, c.1548delG, p.K536X, p.R560G, c.1782delA, p.L571S, [p.G576A; p.R668C], p.T582R, p.E585X, c.1898 + 1G > A, c.1898 + 3A > G, c.2051delTT, p.E692X, p.R851L, c.2711delT, c.2751 + 3A > G, c.2752-26A > G, p.D924N, p.S945L, c.3121-1G > A, p.V1008D, p.L1065R, [p.R1070W; p.R668C], [p.F1074L; 5T], p.H1085R, p.R1158X, c.3659delC #, c.3667del4, c.3737delA, c.3860ins31, c.3905insT #, c.4005 + 1G > A, p.T1299I, p.E1308X, p.Q1313X, c.4095 + 2T > A, rearrangements study (n = 4) Mutations identified in CF families with mixed European origin: c.182delT, p.L1254X, c.4010del4.
X
ABCC7 p.Gly1244Val 17331079:52:564
status: NEW[hide] Genotyping microarray for the detection of more th... J Mol Diagn. 2005 Aug;7(3):375-87. Schrijver I, Oitmaa E, Metspalu A, Gardner P
Genotyping microarray for the detection of more than 200 CFTR mutations in ethnically diverse populations.
J Mol Diagn. 2005 Aug;7(3):375-87., [PMID:16049310]
Abstract [show]
Cystic fibrosis (CF), which is due to mutations in the cystic fibrosis transmembrane conductance regulator gene, is a common life-shortening disease. Although CF occurs with the highest incidence in Caucasians, it also occurs in other ethnicities with variable frequency. Recent national guidelines suggest that all couples contemplating pregnancy should be informed of molecular screening for CF carrier status for purposes of genetic counseling. Commercially available CF carrier screening panels offer a limited panel of mutations, however, making them insufficiently sensitive for certain groups within an ethnically diverse population. This discrepancy is even more pronounced when such carrier screening panels are used for diagnostic purposes. By means of arrayed primer extension technology, we have designed a genotyping microarray with 204 probe sites for CF transmembrane conductance regulator gene mutation detection. The arrayed primer extension array, based on a platform technology for disease detection with multiple applications, is a robust, cost-effective, and easily modifiable assay suitable for CF carrier screening and disease detection.
Comments [show]
None has been submitted yet.
No. Sentence Comment
53 Table 1. Continued CFTR location Amino acid change Nucleotide change 141 IVS 16 Splicing defect 3120 ϩ 1GϾA 142 IVS 16 Splicing defect 3121 - 2AϾG 143 IVS 16 Splicing defect 3121 - 2AϾT 144 E 17a Frameshift 3132delTG 145 E 17a I1005R 3146TϾG 146 E 17a Frameshift 3171delC 147 E 17a Frameshift 3171insC 148 E 17a del V1022 and I1023 3199del6 149 E 17a Splicing defect 3271delGG 150 IVS 17a Possible splicing defect 3272 - 26AϾG 151 E 17b G1061R 3313GϾC 152 E 17b R1066C 3328CϾT 153 E 17b R1066S 3328CϾA 154 E 17b R1066H 3329GϾA 155 E 17b R1066L 3329GϾT 156 E 17b G1069R 3337GϾA 157 E 17b R1070Q 3341GϾA 158 E 17b R1070P 3341GϾC 159 E 17b L1077P 3362TϾC 160 E 17b W1089X 3398GϾA 161 E 17b Y1092X (TAA) 3408CϾA 162 E 17b Y1092X (TAG) 3408CϾG 163 E 17b L1093P 3410TϾC 164 E 17b W1098R 3424TϾC 165 E 17b Q1100P 3431AϾC 166 E 17b M1101K 3434TϾA 167 E 17b M1101R 3434TϾG 168 IVS 17b 3500 - 2AϾT 3500 - 2AϾT 169 IVS 17b Splicing defect 3500 - 2AϾG 170 E 18 D1152H 3586GϾC 171 E 19 R1158X 3604CϾT 172 E 19 R1162X 3616CϾT 173 E 19 Frameshift 3659delC 174 E 19 S1196X 3719CϾG 175 E 19 S1196T 3719TϾC 176 E 19 Frameshift and K1200E 3732delA and 3730AϾG 177 E 19 Frameshift 3791delC 178 E 19 Frameshift 3821delT 179 E 19 S1235R 3837TϾG 180 E 19 Q1238X 3844CϾT 181 IVS 19 Possible splicing defect 3849 ϩ 4AϾG 182 IVS 19 Splicing defect 3849 ϩ 10 kb CϾT 183 IVS 19 Splicing defect 3850 - 1GϾA 184 E 20 G1244E 3863GϾA 185 E 20 G1244V 3863GϾT 186 E 20 Frameshift 3876delA 187 E 20 G1249E 3878GϾA 188 E 20 S1251N 3884GϾA 189 E 20 T1252P 3886AϾC 190 E 20 S1255X 3896CϾA and 3739AϾG in E19 191 E 20 S1255L 3896CϾT 192 E 20 Frameshift 3905insT 193 E 20 D1270N 3940GϾA 194 E 20 W1282R 3976TϾC 195 E 20 W1282X 3978GϾA 196 E 20 W1282C 3978GϾT 197 E 20 R1283M 3980GϾT 198 E 20 R1283K 3980GϾA 199 IVS 20 Splicing defect 4005 ϩ 1GϾA 200 E 21 Frameshift 4010del4 201 E 21 Frameshift 4016insT 202 E 22 Inframe del E21 del E21 203 E 21 N1303K 4041CϾG 204 E 24 Frameshift 4382delA Genomic and Synthetic Template Samples Where possible, native genomic DNA was collected.
X
ABCC7 p.Gly1244Val 16049310:53:1651
status: NEW150 Primers Generated to Create Synthetic Templates That Serve As Positive Mutation Controls Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј 175delC synt F T(15)ATTTTTTTCAGGTGAGAAGGTGGCCA 175delC synt R T(15)ATTTGGAGACAACGCTGGCCTTTTCC W19C synt F T(15)TACCAGACCAATTTTGAGGAAAGGAT W19C synt R T(15)ACAGCTAAAATAAAGAGAGGAGGAAC Q39X synt F T(15)TAAATCCCTTCTGTTGATTCTGCTGA Q39X synt R T(15)AGTATATGTCTGACAATTCCAGGCGC 296 ϩ 12TϾC synt F T(15)CACATTGTTTAGTTGAAGAGAGAAAT 296 ϩ 12TϾC synt R T(15)GCATGAACATACCTTTCCAATTTTTC 359insT synt F T(15)TTTTTTTCTGGAGATTTATGTTCTAT 359insT synt R T(15)AAAAAAACATCGCCGAAGGGCATTAA E60X synt F T(15)TAGCTGGCTTCAAAGAAAAATCCTAA E60X synt R T(15)ATCTATCCCATTCTCTGCAAAAGAAT P67L synt F T(15)TTAAACTCATTAATGCCCTTCGGCGA P67L synt R T(15)AGATTTTTCTTTGAAGCCAGCTCTCT R74Q synt F T(15)AGCGATGTTTTTTCTGGAGATTTATG R74Q synt R T(15)TGAAGGGCATTAATGAGTTTAGGATT R75X synt F T(15)TGATGTTTTTTCTGGAGATTTATGTT R75X synt R T(15)ACCGAAGGGCATTAATGAGTTTAGGA W57X(TAG) synt F T(15)AGGATAGAGAGCTGGCTTCAAAGAAA W57X(TAG) synt R T(15)TATTCTCTGCAAAAGAATAAAAAGTG W57X(TGA) synt F T(15)AGATAGAGAGCTGGCTTCAAAGAAAA W57X(TGA) synt R T(15)TCATTCTCTGCAAAAGAATAAAAAGT G91R synt F T(15)AGGGTAAGGATCTCATTTGTACATTC G91R synt R T(15)TTAAATATAAAAAGATTCCATAGAAC 405 ϩ 1GϾA synt F T(15)ATAAGGATCTCATTTGTACATTCATT 405 ϩ 1GϾA synt R T(15)TCCCTAAATATAAAAAGATTCCATAG 405 ϩ 3AϾC synt F T(15)CAGGATCTCATTTGTACATTCATTAT 405 ϩ 3AϾC synt R T(15)GACCCCTAAATATAAAAAGATTCCAT 406 - 1GϾA synt F T(15)AGAAGTCACCAAAGCAGTACAGCCTC 406 - 1GϾA synt R T(15)TTACAAAAGGGGAAAAACAGAGAAAT E92X synt F T(15)TAAGTCACCAAAGCAGTACAGCCTCT E92X synt R T(15)ACTACAAAAGGGGAAAAACAGAGAAA E92K synt F T(15)AAAGTCACCAAAGCAGTACAGCCTCT E92K synt R T(15)TCTACAAAAGGGGAAAAACAGAGAAA 444delA synt F T(15)GATCATAGCTTCCTATGACCCGGATA 444delA synt R T(15)ATCTTCCCAGTAAGAGAGGCTGTACT 574delA synt F T(15)CTTGGAATGCAGATGAGAATAGCTAT 574delA synt R T(15)AGTGATGAAGGCCAAAAATGGCTGGG 621GϾA synt F T(15)AGTAATACTTCCTTGCACAGGCCCCA 621GϾA synt R T(15)TTTCTTATAAATCAAACTAAACATAG Q98P synt F T(15)CGCCTCTCTTACTGGGAAGAATCATA Q98P synt R T(15)GGTACTGCTTTGGTGACTTCCTACAA 457TATϾG synt F T(15)GGACCCGGATAACAAGGAGGAACGCT 457TATϾG synt R T(15)CGGAAGCTATGATTCTTCCCAGTAAG I148T synt F T(15)CTGGAATGCAGATGAGAATAGCTATG I148T synt R T(15)GTGTGATGAAGGCCAAAAATGGCTGG 624delT synt F T(15)CTTAAAGCTGTCAAGCCGTGTTCTAG 624delT synt R T(15)TAAGTCTAAAAGAAAAATGGAAAGTT 663delT synt F T(15)ATGGACAACTTGTTAGTCTCCTTTCC 663delT synt R T(15)CATACTTATTTTATCTAGAACACGGC G178R synt F T(15)AGACAACTTGTTAGTCTCCTTTCCAA G178R synt R T(15)TAATACTTATTTTATCTAGAACACGG Q179K synt F T(15)AAACTTGTTAGTCTCCTTTCCAACAA Q179K synt R T(15)TTCCAATACTTATTTTATCTAGAACA 711 ϩ 5GϾA synt F T(15)ATACCTATTGATTTAATCTTTTAGGC 711 ϩ 5GϾA synt R T(15)TTATACTTCATCAAATTTGTTCAGGT 712 - 1GϾT synt F T(15)TGGACTTGCATTGGCACATTTCGTGT 712 - 1GϾT synt R T(15)TATGGAAAATAAAAGCACAGCAAAAAC H199Y synt F T(15)TATTTCGTGTGGATCGCTCCTTTGCA H199Y synt R T(15)TATGCCAATGCTAGTCCCTGGAAAATA P205S synt F T(15)TCTTTGCAAGTGGCACTCCTCATGGG P205S synt R T(15)TAAGCGATCCACACGAAATGTGCCAAT L206W synt F T(15)GGCAAGTGGCACTCCTCATGGGGCTA L206W synt R T(15)TCAAGGAGCGATCCACACGAAATGTGC Q220X synt F T(15)TAGGCGTCTGCTTTCTGTGGACTTGG Q220X synt R T(15)TATAACAACTCCCAGATTAGCCCCATG 936delTA synt F T(15)AATCCAATCTGTTAAGGCATACTGCT 936delTA synt R T(15)TGATTTTCAATCATTTCTGAGGTAATC 935delA synt F T(15)GAAATATCCAATCTGTTAAGGCATAC 935delA synt R T(15)TATTTCAATCATTTCTGAGGTAATCAC N287Y synt F T(15)TACTTAAGACAGTAAGTTGTTCCAAT N287Y synt R T(15)TATTCAATCATTTTTTCCATTGCTTCT 1002 - 3TϾG synt F T(15)GAGAACAGAACTGAAACTGACTCGGA 1002 - 3TϾG synt R T(15)TCTAAAAAACAATAACAATAAAATTCA 1154insTC syntwt F T(15)ATCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntwt R T(15)TTGAGATGGTGGTGAATATTTTCCGGA 1154insTC syntmt F T(15)TCTCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntmt R T(15)TAGAGATGGTGGTGAATATTTTCCGGA DF311 mt syntV1 F T(15)CCTTCTTCTCAGGGTTCTTTGTGGTG dF311 mt syntV1 R T(15)GAGAAGAAGGCTGAGCTATTGAAGTATC G330X synt F T(15)TGAATCATCCTCCGGAAAATATTCAC G330X synt R T(15)ATTTGATTAGTGCATAGGGAAGCACA S364P synt F T(15)CCTCTTGGAGCAATAAACAAAATACA S364P synt R T(15)GGTCATACCATGTTTGTACAGCCCAG Q359K/T360K mt synt F T(15)AAAAAATGGTATGACTCTCTTGGAGC Q359K/T360K mt synt R T(15)TTTTTTACAGCCCAGGGAAATTGCCG 1078delT synt F T(15)CTTGTGGTGTTTTTATCTGTGCTTCC 1078delT synt R T(15)CAAGAACCCTGAGAAGAAGAAGGCTG 1119delA synt F T(15)CAAGGAATCATCCTCCGGAAAATATT 1119delA synt R T(15)CTTGATTAGTGCATAGGGAAGCACAG 1161delC synt F T(15)GATTGTTCTGCGCATGGCGGTCACTC 1161delC synt R T(15)TCAGAATGAGATGGTGGTGAATATTT T338I synt F T(15)TCACCATCTCATTCTGCATTGTTCTG T338I synt R T(15)ATGAATATTTTCCGGAGGATGATTCC R352Q synt F T(15)AGCAATTTCCCTGGGCTGTACAAACA R352Q synt R T(15)TGAGTGACCGCCATGCGCAGAACAAT L346P synt F T(15)CGCGCATGGCGGTCACTCGGCAATTT L346P synt R T(15)GGAACAATGCAGAATGAGATGGTGGT 1259insA synt F T(15)AAAAAGCAAGAATATAAGACATTGGA 1259insA synt R T(15)TTTTTGTAAGAAATCCTATTTATAAA W401X(TAG)mtsynt F T(15)AGGAGGAGGTCAGAATTTTTAAAAAA W401X(TAG)mtsynt R T(15)TAGAAGGCTGTTACATTCTCCATCAC W401X(TGA) synt F T(15)AGAGGAGGTCAGAATTTTTAAAAAAT W401X(TGA) synt R T(15)TCAGAAGGCTGTTACATTCTCCATCA 1342 - 2AϾC synt F T(15)CGGGATTTGGGGAATTATTTGAGAAA 1342 - 2AϾC synt R T(15)GGTTAAAAAAACACACACACACACAC 1504delG synt F T(15)TGATCCACTGTAGCAGGCAAGGTAGT 1504delG synt R T(15)TCAGCAACCGCCAACAACTGTCCTCT G480C synt F T(15)TGTAAAATTAAGCACAGTGGAAGAAT G480C synt R T(15)ACTCTGAAGGCTCCAGTTCTCCCATA C524X synt F T(15)ACAACTAGAAGAGGTAAGAAACTATG C524X synt R T(15)TCATGCTTTGATGACGCTTCTGTATC V520F synt F T(15)TTCATCAAAGCAAGCCAACTAGAAGA V520F synt R T(15)AGCTTCTGTATCTATATTCATCATAG 1609delCA synt F T(15)TGTTTTCCTGGATTATGCCTGGCACC 1609delCA synt R T(15)CAGAACAGAATGAAATTCTTCCACTG 1717 - 8GϾA synt F T(15)AGTAATAGGACATCTCCAAGTTTGCA 1717 - 8GϾA synt R T(15)TAAAAATAGAAAATTAGAGAGTCACT 1784delG synt F T(15)AGTCAACGAGCAAGAATTTCTTTAGC 1784delG synt R T(15)ACTCCACTCAGTGTGATTCCACCTTC A559T synt F T(15)ACAAGGTGAATAACTAATTATTGGTC A559T synt R T(15)TTAAAGAAATTCTTGCTCGTTGACCT Q552X synt F T(15)TAACGAGCAAGAATTTCTTTAGCAAG Q552X synt R T(15)AACCTCCACTCAGTGTGATTCCACCT S549R(AϾC) synt F T(15)CGTGGAGGTCAACGAGCAAGAATTTC S549R(AϾC) synt R T(15)GCAGTGTGATTCTACCTTCTCCAAGA S549R(TϾG) synt F T(15)GGGAGGTCAACGAGCAAGTATTTC S549R(TϾG) synt R T(15)CCTCAGTGTGATTCCACCTTCTCCAA L558S synt F T(15)CAGCAAGGTGAATAACTAATTATTGG L558S synt R T(15)GAAGAAATTCTCGCTCGTTGACCTCC 1811 ϩ 1.6 kb AϾG synt F T(15)GTAAGTAAGGTTACTATCAATCACAC 1811 ϩ 1.6 kb AϾG synt R T(15)CATCTCAAGTACATAGGATTCTCTGT 1812 - 1GϾA synt F T(15)AAGCAGTATACAAAGATGCTGATTTG 1812 - 1GϾA synt R T(15)TTAAAAAGAAAATGGAAATTAAATTA D572N synt F T(15)AACTCTCCTTTTGGATACCTAGATGT D572N synt R T(15)TTAATAAATACAAATCAGCATCTTTG P574H synt F T(15)ATTTTGGATACCTAGATGTTTTAACA P574H synt R T(15)TGAGAGTCTAATAAATACAAATCAGC 1833delT synt F T(15)ATTGTATTTATTAGACTCTCCTTTTG 1833delT synt R T(15)CAATCAGCATCTTTGTATACTGCTCT Table 4. Continued Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј Y563D synt F T(15)GACAAAGATGCTGATTTGTATTTATT Y563D synt R T(15)CTACTGCTCTAAAAAGAAAATGGAAA T582R synt F T(15)GAGAAAAAGAAATATTTGAAAGGTAT T582R synt R T(15)CTTAAAACATCTAGGTATCCAAAAGG E585X synt F T(15)TAAATATTTGAAAGGTATGTTCTTTG E585X synt R T(15)ATTTTTCTGTTAAAACATCTAGGTAT 1898 ϩ 5GϾT synt F T(15)TTTCTTTGAATACCTTACTTATATTG 1898 ϩ 5GϾT synt R T(15)AATACCTTTCAAATATTTCTTTTTCT 1924del7 synt F T(15)CAGGATTTTGGTCACTTCTAAAATGG 1924del7 synt R T(15)CTGTTAGCCATCAGTTTACAGACACA 2055del9ϾA synt F T(15)ACATGGGATGTGATTCTTTCGACCAA 2055del9ϾA synt R T(15)TCTAAAGTCTGGCTGTAGATTTTGGA D648V synt F T(15)TTTCTTTCGACCAATTTAGTGCAGAA D648V synt R T(15)ACACATCCCATGAGTTTTGAGCTAAA K710X synt F T(15)TAATTTTCCATTGTGCAAAAGACTCC K710X synt R T(15)ATCGTATAGAGTTGATTGGATTGAGA I618T synt F T(15)CTTTGCATGAAGGTAGCAGCTATTTT I618T synt R T(15)GTTAATATTTTGTCAGCTTTCTTTAA R764X synt F T(15)TGAAGGAGGCAGTCTGTCCTGAACCT R764X synt R T(15)ATGCCTGAAGCGTGGGGCCAGTGCTG Q685X synt F T(15)TAATCTTTTAAACAGACTGGAGAGTT Q685X synt R T(15)ATTTTTTTGTTTCTGTCCAGGAGACA R709X synt F T(15)TGAAAATTTTCCATTGTGCAAAAGAC R709X synt R T(15)ATATAGAGTTGATTGGATTGAGAATA V754M synt F T(15)ATGATCAGCACTGGCCCCACGCTTCA V754M synt R T(15)TGCTGATGCGAGGCAGTATCGCCTCT 1949del84 synt F T(15)AAAAATCTACAGCCAGACTTTATCTC 1949del84 synt R T(15)TTTTTAGAAGTGACCAAAATCCTAGT 2108delA synt F T(15)GAATTCAATCCTAACTGAGACCTTAC 2108delA synt R T(15)ATTCTTCTTTCTGCACTAAATTGGTC 2176insC synt F T(15)CCAAAAAAACAATCTTTTAAACAGACTGGAGAG 2176insC synt R T(15)GGTTTCTGTCCAGGAGACAGGAGCAT 2184delA synt F T(15)CAAAAAACAATCTTTTAAACAGACTGG 2184delA synt R T(15)GTTTTTTGTTTCTGTCCAGGAGACAG 2105-2117 del13 synt F T(15)AAACTGAGACCTTACACCGTTTCTCA 2105-2117 del13 synt R T(15)TTTCTTTCTGCACTAAATTGGTCGAA 2307insA synt F T(15)AAAGAGGATTCTGATGAGCCTTTAGA 2307insA synt R T(15)TTTCGATGCCATTCATTTGTAAGGGA W846X synt F T(15)AAACACATACCTTCGATATATTACTGTCCAC W846X synt R T(15)TCATGTAGTCACTGCTGGTATGCTCT 2734G/AT synt F T(15)TTAATTTTTCTGGCAGAGGTAAGAAT 2734G/AT synt R T(15)TTAAGCACCAAATTAGCACAAAAATT 2766del8 synt F T(15)GGTGGCTCCTTGGAAAGTGAGTATTC 2766del8 synt R T(15)CACCAAAGAAGCAGCCACCTGGAATGG 2790 - 2AϾG synt F T(15)GGCACTCCTCTTCAAGACAAAGGGAA 2790 - 2AϾG synt R T(15)CGTAAAGCAAATAGGAAATCGTTAAT 2991del32 synt F T(15)TTCAACACGTCGAAAGCAGGTACTTT 2991del32 synt R T(15)AAACATTTTGTGGTGTAAAATTTTCG Q890X synt F T(15)TAAGACAAAGGGAATAGTACTCATAG Q890X synt R T(15)AAAGAGGAGTGCTGTAAAGCAAATAG 2869insG synt F T(15)GATTATGTGTTTTACATTTACGTGGG 2869insG synt R T(15)CACGAACTGGTGCTGGTGATAATCAC 3120GϾA synt F T(15)AGTATGTAAAAATAAGTACCGTTAAG 3120GϾA synt R T(15)TTGGATGAAGTCAAATATGGTAAGAG 3121 - 2AϾT synt F T(15)TGTTGTTATTAATTGTGATTGGAGCT 3121 - 2AϾT synt R T(15)AGTAAGATCAAAGAAAACATGTTGGT 3132delTG synt F T(15)TTGATTGGAGCCATAGCAGTTGTCGC 3132delTG synt R T(15)AATTAATAACAACTGTAAGATCAAAG 3271delGG synt F T(15)ATATGACAGTGAATGTGCGATACTCA 3271delGG synt R T(15)ATTCAGATTCCAGTTGTTTGAGTTGC 3171delC synt F T(15)ACCTACATCTTTGTTGCAACAGTGCC 3171delC synt R T(15)AGGTTGTAAAACTGCGACAACTGCTA 3171insC synt F T(15)CCCCTACATCTTTGTTGCTACAGTGC 3171insC synt R T(15)GGGGTTGTAAAACTGCGACAACTGCT 3199del6 synt F T(15)GAGTGGCTTTTATTATGTTGAGAGCATAT 3199del6 synt R T(15)CCACTGGCACTGTTGCAACAAAGATG M1101K synt F T(15)AGAGAATAGAAATGATTTTTGTCATC M1101K synt R T(15)TTTTGGAACCAGCGCAGTGTTGACAG G1061R synt F T(15)CGACTATGGACACTTCGTGCCTTCGG G1061R synt R T(15)GTTTTAAGCTTGTAACAAGATGAGTG R1066L synt F T(15)TTGCCTTCGGACGGCAGCCTTACTTT R1066L synt R T(15)AGAAGTGTCCATAGTCCTTTTAAGCT R1070P synt F T(15)CGCAGCCTTACTTTGAAACTCTGTTC R1070P synt R T(15)GGTCCGAAGGCACGAAGTGTCCATAG L1077P synt F T(15)CGTTCCACAAAGCTCTGAATTTACAT L1077P synt R T(15)GGAGTTTCAAAGTAAGGCTGCCGTCC W1089X synt F T(15)AGTTCTTGTACCTGTCAACACTGCGC W1089X synt R T(15)TAGTTGGCAGTATGTAAATTCAGAGC L1093P synt F T(15)CGTCAACACTGCGCTGGTTCCAAATG L1093P synt R T(15)GGGTACAAGAACCAGTTGGCAGTATG W1098R synt F T(15)CGGTTCCAAATGAGAATAGAAATGAT W1098R synt R T(15)GGCGCAGTGTTGACAGGTACAAGAAC Q1100P synt F T(15)CAATGAGAATAGAAATGATTTTTGTC Q1100P synt R T(15)GGGAACCAGCGCAGTGTTGACAGGTA D1152H synt F T(15)CATGTGGATAGCTTGGTAAGTCTTAT D1152H synt R T(15)GTATGCTGGAGTTTACAGCCCACTGC R1158X synt F T(15)TGATCTGTGAGCCGAGTCTTTAAGTT R1158X synt R T(15)ACATCTGAAATAAAAATAACAACATT S1196X synt F T(15)GACACGTGAAGAAAGATGACATCTGG S1196X synt R T(15)CAATTCTCAATAATCATAACTTTCGA 3732delA synt F T(15)GGAGATGACATCTGGCCCTCAGGGGG 3732delA synt R T(15)CTCCTTCACGTGTGAATTCTCAATAA 3791delC synt F T(15)AAGAAGGTGGAAATGCCATATTAGAG 3791delC synt R T(15)TTGTATTTTGCTGTGAGATCTTTGAC 3821delT synt F T(15)ATTCCTTCTCAATAAGTCCTGGCCAG 3821delT synt R T(15)GAATGTTCTCTAATATGGCATTTCCA Q1238X synt F T(15)TAGAGGGTGAGATTTGAACACTGCTT Q1238X synt R T(15)AGCCAGGACTTATTGAGAAGGAAATG S1255X (ex19)synt F T(15)GTCTGGCCCTCAGGGGGCCAAATGAC S1255X (ex19) synt R T(15)CGTCATCTTTCTTCACGTGTGAATTC S1255X;L synt F T(15)AAGCTTTTTTGAGACTACTGAACACT S1255X;L synt R T(15)TATAACAAAGTAATCTTCCCTGATCC 3849 ϩ 4AϾG synt F T(15)GGATTTGAACACTGCTTGCTTTGTTA 3849 ϩ 4AϾG synt R T(15)CCACCCTCTGGCCAGGACTTATTGAG 3850 - 1GϾA synt F T(15)AGTGGGCCTCTTGGGAAGAACTGGAT 3850 - 1GϾA synt R T(15)TTATAAGGTAAAAGTGATGGGATCAC 3905insT synt F T(15)TTTTTTTGAGACTACTGAACACTGAA 3905insT synt R T(15)AAAAAAAGCTGATAACAAAGTACTCT 3876delA synt F T(15)CGGGAAGAGTACTTTGTTATCAGCTT 3876delA synt R T(15)CGATCCAGTTCTTCCCAAGAGGCCCA G1244V synt F T(15)TAAGAACTGGATCAGGGAAGAGTACT G1244V synt R T(15)ACCAAGAGGCCCACCTATAAGGTAAA G1249E synt F T(15)AGAAGAGTACTTTGTTATCAGCTTTT G1249E synt R T(15)TCTGATCCAGTTCTTCCCAAGAGGCC S1251N synt F T(15)ATACTTTGTTATCAGCTTTTTTGAGACTACTG S1251N synt R T(15)TTCTTCCCTGATCCAGTTCTTCCCAA S1252P synt F T(15)CCTTTGTTATCAGCTTTTTTGAGACT S1252P synt R T(15)GACTCTTCCCTGATCCAGTTCTTCCC D1270N synt F T(15)AATGGTGTGTCTTGGGATTCAATAAC D1270N synt R T(15)TGATCTGGATTTCTCCTTCAGTGTTC W1282R synt F T(15)CGGAGGAAAGCCTTTGGAGTGATACC W1282R synt R T(15)GCTGTTGCAAAGTTATTGAATCCCAA R1283K synt F T(15)AGAAAGCCTTTGGAGTGATACCACAG R1283K synt R T(15)TTCCACTGTTGCAAAGTTATTGAATC 4005 ϩ 1GϾA synt F T(15)ATGAGCAAAAGGACTTAGCCAGAAAA 4005 ϩ 1GϾA synt R T(15)TCTGTGGTATCACTCCAAAGGCTTTC 4010del4 synt F T(15)GTATTTTTTCTGGAACATTTAGAAAAAACTTGG 4010del4 synt R T(15)AAAATACTTTCTATAGCAAAAAAGAAAAGAAGAA 4016insT synt F T(15)TTTTTTTCTGGAACATTTAGAAAAAACTTGG 4016insT synt R T(15)AAAAAAATAAATACTTTCTATAGCAAAAAAGAAAAGAAGA CFTRdele21 synt F T(15)TAGGTAAGGCTGCTAACTGAAATGAT CFTRdele21 synt R T(15)CCTATAGCAAAAAAGAAAAGAAGAAGAAAGTATG 4382delA synt F T(15)GAGAGAACAAAGTGCGGCAGTACGAT 4382delA synt R T(15)CTCTATGACCTATGGAAATGGCTGTT Bold, mutation allele of interest; bold and italicized, modified nucleotide.
X
ABCC7 p.Gly1244Val 16049310:150:12496
status: NEWX
ABCC7 p.Gly1244Val 16049310:150:12542
status: NEW[hide] Double mutant alleles: are they rare? Hum Mol Genet. 1995 Jul;4(7):1169-71. Savov A, Angelicheva D, Balassopoulou A, Jordanova A, Noussia-Arvanitakis S, Kalaydjieva L
Double mutant alleles: are they rare?
Hum Mol Genet. 1995 Jul;4(7):1169-71., [PMID:8528204]
Abstract [show]
The presence of two different mutations carried by the same CF allele has been demonstrated in four out of 44 Bulgarian CF patients during a systematic search of the entire coding sequence of the CFTR gene. Two of the double mutant alleles include one nonsense and one missense mutation and although the nonsense mutation can be considered to be the main defect, the amino acid substitutions are good candidates for disease-causing mutations as well. One double mutant carries two missense mutations whose contribution to the CF phenotype is difficult to evaluate. The findings suggest that double mutant alleles may be more common than expected and could account for some of the problems in phenotype-genotype correlations. Such alleles may have important implications for molecular diagnosis and genetic counselling.
Comments [show]
None has been submitted yet.
No. Sentence Comment
44 S912L and G1244V A C->T transition at nucleotide position 2867 in exon 15 and a G->T transversion at position 3863 in exon 20 of the CFTR gene were found in a patient who also carries G542X.
X
ABCC7 p.Gly1244Val 8528204:44:10
status: NEW45 The first missense mutation results in the substitution of leucine for serine (S912L) in the transmembrane region of the CFTR protein (TM8), whereas the second leads to the replacement of glycine by valine (G1244V) in the second nucleotide binding domain.
X
ABCC7 p.Gly1244Val 8528204:45:207
status: NEW55 The other double mutant CF allele detected in this study carries two missense mutations (S912L + G1244V) whose independent contribution to the clinical phenotype is difficult to evaluate.
X
ABCC7 p.Gly1244Val 8528204:55:97
status: NEW58 The substitution of valine for glycine in G1244V may in itself result in conformational changes in an important protein domain which are more pronounced than those caused by the substitution of glutamic acid.
X
ABCC7 p.Gly1244Val 8528204:58:42
status: NEW59 It is also possible that G1244V alone would result in mild CF and that S912L is the main defect in the double mutant S912L + G1244V allele.
X
ABCC7 p.Gly1244Val 8528204:59:25
status: NEWX
ABCC7 p.Gly1244Val 8528204:59:125
status: NEW67 Neither S912L nor G1244V have been found to occur in isolation in any of our patients.
X
ABCC7 p.Gly1244Val 8528204:67:18
status: NEW[hide] Independent origins of cystic fibrosis mutations R... Am J Hum Genet. 1994 Nov;55(5):890-8. Morral N, Llevadot R, Casals T, Gasparini P, Macek M Jr, Dork T, Estivill X
Independent origins of cystic fibrosis mutations R334W, R347P, R1162X, and 3849 + 10kbC-->T provide evidence of mutation recurrence in the CFTR gene.
Am J Hum Genet. 1994 Nov;55(5):890-8., [PMID:7526685]
Abstract [show]
Microsatellite analysis of chromosomes carrying particular cystic fibrosis mutations has shown different haplotypes in four cases: R334W, R347P, R1162X, and 3849 + 10kbC-->T. To investigate the possibility of recurrence of these mutations, analysis of intra- and extragenic markers flanking these mutations has been performed. Recurrence is the most plausible explanation, as it becomes necessary to postulate either double recombinations or single recombinations in conjunction with slippage at one or more microsatellite loci, to explain the combination of mutations and microsatellites if the mutations arose only once. Also in support of recurrence, mutations R334W, R347P, R1162X, and 3849 + 10kbC-->T involve CpG dinucleotides, which are known to have an increased mutation rate. Although only 15.7% of point mutations in the coding sequence of CFTR have occurred at CpG dinucleotides, approximately half of these CpG sites have mutated at least once. Specific nucleotide positions of the coding region of CFTR, distinct from CpG sequences, also seem to have a higher mutation rate, and so it is possible that the mutations observed are recurrent. G-->A transitions are the most common change found in those positions involved in more than one mutational event in CFTR.
Comments [show]
None has been submitted yet.
No. Sentence Comment
112 CT................... 3863: G--oA .................. G-.T ................... 3980: G-jA .................. G--)T.................... 4374+1: G-A .................. G--oT.................... L88S L88X L88X G. Malone, personal communication Savov et al. 1994b Macek et al. 1992 406-1G--.C Bonizzato et al. 1992 406-1G- T T. Bienvenu, personal communication E92K Nunes et al. 1993 E92X Will et al. 1994 S549N Cutting et al. 1990 S5491 Kerem et al. 1990 R560K Ferec et al. 1992 R560T Kerem et al. 1990 Y563D A. Hamosh, personal communication Y563N Kerem et al. 1990 1898+1CG-.A Strong et al. 1992 1898+1GC-.C Cuppens et al. 1993 1898+3A-)C W. Lissens, personal communication 1898+3A--4G Cremonesi et al. 1992 G628R G628R 2183AA- G 2184delA 2184insA M1101K M1101R 3667del4 3667ins4 3791delC T12201 G1244E G1244V R1283K R1283M Fanen et al. 1992 Cuppens et al. 1993 Bozon et al. 1994 Dork et al., in press N. Kilin, personal communication Zielenski et al. 1993 Mercier et al. 1993 Chillon et al. 1994a Sangiuolo et al. 1993 M. Macek, Jr., personal communication Ghanem et al. 1994 Devoto et al. 1991 Savov et al. 1994a Chevalier et al., in press Cheadle et al. 1992 4374+1G-*A Fanen et al. 1992 4374+1G--iT Dork et al. 1993 of the most common allele.
X
ABCC7 p.Gly1244Val 7526685:112:799
status: NEW[hide] G1244V: a novel missense mutation in exon 20 of th... Hum Mol Genet. 1994 Mar;3(3):513-4. Savov A, Jordanova A, Gavrilov D, Angelicheva D, Kalaydjieva L
G1244V: a novel missense mutation in exon 20 of the CFTR gene in a Bulgarian cystic fibrosis patient.
Hum Mol Genet. 1994 Mar;3(3):513-4., [PMID:7516777]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
1 3 -514 G1244V: a novel missense mutation in exon 20 of the CFTR gene in a Bulgarian cystic fibrosis patient Alexey Savov*, Albena Jordanova, Dlmitar Gavrilov, Dora Angelicheva and Luba Kalayd|ieva Laboratory of Molecular Pathology, University Hospital of Obstetrics, 2 Zdrave Str, 1431 Sofia, Bulgaria Received December 3, 1993; Revised and Accepted January 28, 1994 Cystic Fibrosis (CF) is the most common autosomal recessive genetic disease in Caucasian populations.
X
ABCC7 p.Gly1244Val 7516777:1:7
status: NEW13 The sequence analysis showed a G - T transversion at position 3863 of the CFTR gene (Fig. IB) which can be predicted to result in the substitution of valine for glycine at amino acid position 1244 of the CFTR protein (G1244V).
X
ABCC7 p.Gly1244Val 7516777:13:150
status: NEWX
ABCC7 p.Gly1244Val 7516777:13:218
status: NEW17 The male patient who carries this mutation is of Bulgarian ethnic origin and is a compound heterozygote for G1244V and G542X.
X
ABCC7 p.Gly1244Val 7516777:17:108
status: NEW24 Lane 1, normal individual N/N; lane 2, W1282X/N; lane 3, 3850-1 G-A/N; lane 4, 4005 + 1 G-A/N; lane 5, P1290P/N; lane 10, G1244V/N; lane 11, G1244E/N; lanes 6, 7, 8, 9, 12 investigated patients without mutations in exon 20.
X
ABCC7 p.Gly1244Val 7516777:24:122
status: NEW27 (C) Identification of G1244V on 12% acrylamkte gel electrophoresis on PhastSystem (Pharmacia) after Mboll digestion of exon 20 amplified product.
X
ABCC7 p.Gly1244Val 7516777:27:22
status: NEW28 Lane 1, mother carrying G1244V; lane 2, father; lane 3, affected child; lane 4, size marker X/HindDJ + <*>174/HaeIII.
X
ABCC7 p.Gly1244Val 7516777:28:24
status: NEW[hide] A 96-well formatted method for exon and exon/intro... Anal Biochem. 2006 Jun 15;353(2):226-35. Epub 2006 Apr 5. Lucarelli M, Narzi L, Piergentili R, Ferraguti G, Grandoni F, Quattrucci S, Strom R
A 96-well formatted method for exon and exon/intron boundary full sequencing of the CFTR gene.
Anal Biochem. 2006 Jun 15;353(2):226-35. Epub 2006 Apr 5., [PMID:16635477]
Abstract [show]
Full genotypic characterization of subjects affected by cystic fibrosis (CF) is essential for the definition of the genotype-phenotype correlation as well as for the enhancement of the diagnostic and prognostic value of the genetic investigation. High-sensitivity diagnostic methods, capable of full scanning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, are needed to enhance the significance of these genetic assays. A method for extensive sequencing of the CFTR gene was optimized. This method was applied to subjects clinically positive for CF and to controls from the general population of central Italy as well as to a single subject heterozygous for a mild mutation and with an uncertain diagnosis. Some points that are crucial for the optimization of the method emerged: a 96-well format, primer project and purification, and amplicon purification. The optimized method displayed a high degree of diagnostic sensitivity; we identified a subset of 13 CFTR mutations that greatly enhanced the diagnostic sensitivity of common methods of mutational analysis. A novel G1244R disease causing mutation, leading to a CF phenotype with pancreatic sufficiency but early onset of pulmonary involvement, was detected in the subject with an uncertain diagnosis. Some discrepancies between our results and previously published CFTR sequence were found.
Comments [show]
None has been submitted yet.
No. Sentence Comment
155 The importance of the 1244 codon, which can be classified as a mutational hot spot, is also highlighted by the fact that this same codon can be affected by two other mutations, G1244V [32] and G1244E [33], both of which already have been shown to cause disease.
X
ABCC7 p.Gly1244Val 16635477:155:177
status: NEW[hide] CFTR mutations spectrum and the efficiency of mole... PLoS One. 2014 Feb 26;9(2):e89094. doi: 10.1371/journal.pone.0089094. eCollection 2014. Zietkiewicz E, Rutkiewicz E, Pogorzelski A, Klimek B, Voelkel K, Witt M
CFTR mutations spectrum and the efficiency of molecular diagnostics in Polish cystic fibrosis patients.
PLoS One. 2014 Feb 26;9(2):e89094. doi: 10.1371/journal.pone.0089094. eCollection 2014., [PMID:24586523]
Abstract [show]
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR). In light of the strong allelic heterogeneity and regional specificity of the mutation spectrum, the strategy of molecular diagnostics and counseling in CF requires genetic tests to reflect the frequency profile characteristic for a given population. The goal of the study was to provide an updated comprehensive estimation of the distribution of CFTR mutations in Polish CF patients and to assess the effectiveness of INNOLiPA_CFTR tests in Polish population. The analyzed cohort consisted of 738 patients with the clinically confirmed CF diagnosis, prescreened for molecular defects using INNOLiPA_CFTR panels from Innogenetics. A combined efficiency of INNOLiPA CFTR_19 and CFTR_17_TnUpdate tests was 75.5%; both mutations were detected in 68.2%, and one mutation in 14.8% of the affected individuals. The group composed of all the patients with only one or with no mutation detected (109 and 126 individuals, respectively) was analyzed further using a mutation screening approach, i.e. SSCP/HD (single strand conformational polymorphism/heteroduplex) analysis of PCR products followed by sequencing of the coding sequence. As a result, 53 more mutations were found in 97 patients. The overall efficiency of the CF allele detection was 82.5% (7.0% increase compared to INNOLiPA tests alone). The distribution of the most frequent mutations in Poland was assessed. Most of the mutations repetitively found in Polish patients had been previously described in other European populations. The most frequent mutated allele, F508del, represented 54.5% of Polish CF chromosomes. Another eight mutations had frequencies over 1%, 24 had frequencies between 1 and 0.1%; c.2052-2053insA and c.3468+2_3468+3insT were the most frequent non-INNOLiPA mutations. Mutation distribution described herein is also relevant to the Polish diaspora. Our study also demonstrates that the reported efficiency of mutation detection strongly depends on the diagnostic experience of referring health centers.
Comments [show]
None has been submitted yet.
No. Sentence Comment
101 The more recent estimates provide much lower values, ranging from 1:5000 [14], 1:6000 cited in WHO 2002 report [15] to 1:7500 for Southeastern Poland estimated for a 1-year period of Table 2. Cont. Exon / intron (legacy) Exon / intron (Ensembl) Protein change SVM value cDNA (HGVS nomenclature) gDNA (cDNA +132 bp) Number of PL CF chromosomes Reference a Mutations in trans 15 17 L967S 0.27 c.2900T.C 3032T.C 1 CFMDB; rs1800110 unknown 18 21 D1152H 0.50 c.3454G.C 3586G.C 1 CFMDB; rs75541969 F508del Sequence changes considered as lacking pathogenic effect 4 4 I148T 2.04 c.443T.U 575T.U 4 IL19e unknown 13 14 I752V 0.35 c.2254A.G 2386A.G 1 Novelf F508 15 17 S912L 2.12 c.2735C.T 2867C.T 1 CFMDBg ; rs121909034 F508 Legend: a IL19 i 17 - mutations included in the INNOLiPA tests (see below); CFMDB - non-INNOLiPA mutations present in the CTFR mutation database; novel - mutations first reported in this study; b in three chromosomes R668C with G576A in trans; c F508del, c.1585-1G.A, G542X, N1303K or c.579+3A.G; d F508del, G542X, R553X or N1303K; e not pathogenic if not in cis with c.3067-72del6 (l.n.3199del6); f not pathogenic - see explanation the text; g not pathogenic if not in cis with G1244V.
X
ABCC7 p.Gly1244Val 24586523:101:1195
status: NEW