ABCC7 p.Arg555Ala
ClinVar: |
c.1663A>G
,
p.Arg555Gly
?
, not provided
|
CF databases: |
c.1663A>G
,
p.Arg555Gly
(CFTR1)
?
, This mutation was detected by multiplex heteroduplex analysis on the MDE gel matrix. It was found in one Native Canadian CF patient (second mutation: Y1307X).
|
Predicted by SNAP2: | A: D (85%), C: D (85%), D: D (95%), E: D (91%), F: D (91%), G: D (91%), H: D (85%), I: D (91%), K: D (75%), L: D (71%), M: D (85%), N: D (85%), P: D (95%), Q: D (85%), S: D (85%), T: D (85%), V: D (91%), W: D (95%), Y: D (91%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] The cystic fibrosis-causing mutation deltaF508 aff... J Biol Chem. 2010 Nov 12;285(46):35825-35. Epub 2010 Jul 28. Thibodeau PH, Richardson JM 3rd, Wang W, Millen L, Watson J, Mendoza JL, Du K, Fischman S, Senderowitz H, Lukacs GL, Kirk K, Thomas PJ
The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis.
J Biol Chem. 2010 Nov 12;285(46):35825-35. Epub 2010 Jul 28., 2010-11-12 [PMID:20667826]
Abstract [show]
The deletion of phenylalanine 508 in the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator is directly associated with >90% of cystic fibrosis cases. This mutant protein fails to traffic out of the endoplasmic reticulum and is subsequently degraded by the proteasome. The effects of this mutation may be partially reversed by the application of exogenous osmolytes, expression at low temperature, and the introduction of second site suppressor mutations. However, the specific steps of folding and assembly of full-length cystic fibrosis transmembrane conductance regulator (CFTR) directly altered by the disease-causing mutation are unclear. To elucidate the effects of the DeltaF508 mutation, on various steps in CFTR folding, a series of misfolding and suppressor mutations in the nucleotide binding and transmembrane domains were evaluated for effects on the folding and maturation of the protein. The results indicate that the isolated NBD1 responds to both the DeltaF508 mutation and intradomain suppressors of this mutation. In addition, identification of a novel second site suppressor of the defect within the second transmembrane domain suggests that DeltaF508 also effects interdomain interactions critical for later steps in the biosynthesis of CFTR.
Comments [show]
None has been submitted yet.
No. Sentence Comment
178 The substitution of R555A, R555G, and R555T resulted in a marked reduction in the formation of band C CFTR, whereas the R555K, as measured by Western blotting of transiently transfected HEK-293 cells displays near wild type CFTR maturation.
X
ABCC7 p.Arg555Ala 20667826:178:20
status: NEW293 The decrease in wild type CFTR trafficking seen with the R555A/ G/T demonstrates that the basic side chain at the 555 locus is required for proper trafficking.
X
ABCC7 p.Arg555Ala 20667826:293:57
status: NEW294 The loss of CFTR trafficking with the R555A/G/T mutations suggests this site defines more than a simple signal motif.
X
ABCC7 p.Arg555Ala 20667826:294:38
status: NEW