ABCC7 p.Lys978Ser

ClinVar: c.2932A>T , p.Lys978* D , Likely pathogenic
Predicted by SNAP2: A: D (71%), C: D (75%), D: D (91%), E: D (85%), F: D (85%), G: D (80%), H: D (71%), I: D (75%), L: D (80%), M: D (63%), N: D (71%), P: D (91%), Q: D (75%), R: D (66%), S: D (66%), T: D (75%), V: D (80%), W: D (91%), Y: D (80%),
Predicted by PROVEAN: A: D, C: D, D: D, E: N, F: D, G: D, H: D, I: D, L: D, M: D, N: N, P: D, Q: N, R: N, S: N, T: D, V: D, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Wang W, Wu J, Bernard K, Li G, Wang G, Bevensee MO, Kirk KL
ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3888-93. Epub 2010 Feb 3., 2010-02-23 [PMID:20133716]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Melin P, Hosy E, Vivaudou M, Becq F
CFTR inhibition by glibenclamide requires a positive charge in cytoplasmic loop three.
Biochim Biophys Acta. 2007 Oct;1768(10):2438-46. Epub 2007 May 21., [PMID:17582383]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Okeyo G, Wang W, Wei S, Kirk KL
Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations.
J Biol Chem. 2013 Jun 14;288(24):17122-33. doi: 10.1074/jbc.M112.442582. Epub 2013 Apr 25., [PMID:23620589]

Abstract [show]
Comments [show]
Sentences [show]