ABCC7 p.Lys978Cys

ClinVar: c.2932A>T , p.Lys978* D , Likely pathogenic
Predicted by SNAP2: A: D (71%), C: D (75%), D: D (91%), E: D (85%), F: D (85%), G: D (80%), H: D (71%), I: D (75%), L: D (80%), M: D (63%), N: D (71%), P: D (91%), Q: D (75%), R: D (66%), S: D (66%), T: D (75%), V: D (80%), W: D (91%), Y: D (80%),
Predicted by PROVEAN: A: D, C: D, D: D, E: N, F: D, G: D, H: D, I: D, L: D, M: D, N: N, P: D, Q: N, R: N, S: N, T: D, V: D, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Wang W, Wu J, Bernard K, Li G, Wang G, Bevensee MO, Kirk KL
ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3888-93. Epub 2010 Feb 3., 2010-02-23 [PMID:20133716]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang G
State-dependent regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gating by a high affinity Fe3+ bridge between the regulatory domain and cytoplasmic loop 3.
J Biol Chem. 2010 Dec 24;285(52):40438-47. Epub 2010 Oct 15., 2010-12-24 [PMID:20952391]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang G
The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2011 Jan 21;286(3):2171-82. Epub 2010 Nov 8., 2011-01-21 [PMID:21059651]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Kirk KL, Wang W
A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter.
J Biol Chem. 2011 Apr 15;286(15):12813-9. Epub 2011 Feb 4., 2011-04-15 [PMID:21296873]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, Okeyo GO, Tao B, Hong JS, Kirk KL
Thermally unstable gating of the most common cystic fibrosis mutant channel (DeltaF508): "rescue" by suppressor mutations in nucleotide binding domain 1 and by constitutive mutations in the cytosolic loops.
J Biol Chem. 2011 Dec 9;286(49):41937-48. Epub 2011 Sep 30., [PMID:21965669]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wei S, Roessler BC, Chauvet S, Guo J, Hartman JL 4th, Kirk KL
Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
J Biol Chem. 2014 Jul 18;289(29):19942-57. doi: 10.1074/jbc.M114.562116. Epub 2014 May 29., [PMID:24876383]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL 4th, Kirk KL
Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.
FASEB J. 2015 Nov 25. pii: fj.15-278382., [PMID:26606940]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Okeyo G, Wang W, Wei S, Kirk KL
Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations.
J Biol Chem. 2013 Jun 14;288(24):17122-33. doi: 10.1074/jbc.M112.442582. Epub 2013 Apr 25., [PMID:23620589]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, Roessler BC, Kirk KL
An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening.
J Biol Chem. 2014 Oct 31;289(44):30364-78. doi: 10.1074/jbc.M114.595710. Epub 2014 Sep 4., [PMID:25190805]

Abstract [show]
Comments [show]
Sentences [show]

[hide] El Hiani Y, Linsdell P
Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.
J Biol Chem. 2015 Jun 19;290(25):15855-65. doi: 10.1074/jbc.M115.656181. Epub 2015 May 5., [PMID:25944907]

Abstract [show]
Comments [show]
Sentences [show]