ABCC7 p.Thr351Ser
ClinVar: |
c.1052C>G
,
p.Thr351Ser
?
, not provided
|
CF databases: |
c.1052C>T
,
p.Thr351Ile
(CFTR1)
?
, This mutation was identified in Polish infant during CF screening program. No other mutation was found after sequencing exons: 7,10,11,13,21. Mutations 3849+10kbC>T, dele2,3(21kb) and R117H were also excluded.
|
Predicted by SNAP2: | A: D (91%), C: D (91%), D: D (91%), E: D (95%), F: D (95%), G: D (91%), H: D (91%), I: D (95%), K: D (95%), L: D (95%), M: D (85%), N: D (91%), P: D (95%), Q: D (95%), R: D (95%), S: D (66%), V: D (91%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: N, C: N, D: N, E: N, F: N, G: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] A novel computational and structural analysis of n... Genomic Med. 2008 Jan;2(1-2):23-32. Epub 2008 May 14. George Priya Doss C, Rajasekaran R, Sudandiradoss C, Ramanathan K, Purohit R, Sethumadhavan R
A novel computational and structural analysis of nsSNPs in CFTR gene.
Genomic Med. 2008 Jan;2(1-2):23-32. Epub 2008 May 14., [PMID:18716917]
Abstract [show]
Single Nucleotide Polymorphisms (SNPs) are being intensively studied to understand the biological basis of complex traits and diseases. The Genetics of human phenotype variation could be understood by knowing the functions of SNPs. In this study using computational methods, we analyzed the genetic variations that can alter the expression and function of the CFTR gene responsible candidate for causing cystic fibrosis. We applied an evolutionary perspective to screen the SNPs using a sequence homology-based SIFT tool, which suggested that 17 nsSNPs (44%) were found to be deleterious. The structure-based approach PolyPhen server suggested that 26 nsSNPS (66%) may disrupt protein function and structure. The PupaSuite tool predicted the phenotypic effect of SNPs on the structure and function of the affected protein. Structure analysis was carried out with the major mutation that occurred in the native protein coded by CFTR gene, and which is at amino acid position F508C for nsSNP with id (rs1800093). The amino acid residues in the native and mutant modeled protein were further analyzed for solvent accessibility, secondary structure and stabilizing residues to check the stability of the proteins. The SNPs were further subjected to iHAP analysis to identify htSNPs, and we report potential candidates for future studies on CFTR mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
125 The nsSNPs which were predicted to be Table 1 List of nsSNPs that were predicted to be deleterious by SIFT and PolyPhen SNPs ID Alleles AA change Tolerance index PSIC rs1800072 G/A V11C 1.00 0.150 rs1800073 C/T R31C 0.18 2.288 rs1800074 A/T D44V 0.01 2.532 rs1800076 G/A R75Q 0.03 1.754 rs1800078 T/C L138P 0.01 2.192 rs35516286 T/C I148T 0.41 1.743 rs1800079 G/A R170H 0.05 1.968 rs1800080 A/G S182G 0.03 1.699 rs1800086 C/G T351S 0.30 1.600 rs1800087 A/C Q353H 0.03 2.093 rs4727853 C/A N417K 1.00 0.015 rs11531593 C/A F433L 0.65 0.694 rs1800089 C/T L467F 0.15 1.568 rs213950 G/A V470M 0.17 1.432 rs1800092 C/A/G I506M 0.00 1.574 rs1801178 A/G I507V 0.38 0.314 rs1800093 T/G F508C 0.00 3.031 rs35032490 A/G K532E 1.00 1.525 rs1800097 G/A V562I 0.13 0.345 rs41290377 G/C G576A 0.33 1.262 rs766874 C/T S605F 0.03 2.147 rs1800099 A/G S654G 0.03 1.611 rs1800100 C/T R668C 0.01 2.654 rs1800101 T/C F693L 0.61 0.895 rs1800103 A/G I807M 0.01 1.554 rs1800106 T/C Y903H 0.52 0.183 rs1800107 G/T S909I 0.10 1.624 rs1800110 T/C L967S 0.07 1.683 rs1800111 G/C L997F 0.24 1.000 rs1800112 T/C I1027T 0.03 1.860 rs1800114 C/T A1067V 0.04 1.542 rs36210737 T/A M1101K 0.05 2.637 rs35813506 G/A R1102K 0.52 1.589 rs1800120 G/T R1162L 0.00 2.038 rs1800123 C/T T1220I 0.22 0.059 rs34911792 T/G S1235R 0.45 1.483 rs11971167 G/A D1270N 0.12 1.739 rs4148725 C/T R1453W 0.00 2.513 Highly deleterious by SIFT and damaging by PolyPhen are indicated as bold deleterious in causing an effect in the structure and function of the protein by SIFT, PolyPhen and Pupasuite correlated well with experimental studies (Tsui 1992; Ghanem et al. 1994; Bienvenu et al. 1998) (Table 3).
X
ABCC7 p.Thr351Ser 18716917:125:426
status: NEW[hide] Independent contribution of common CFTR variants t... Pancreas. 2010 Mar;39(2):209-15. de Cid R, Ramos MD, Aparisi L, Garcia C, Mora J, Estivill X, Farre A, Casals T
Independent contribution of common CFTR variants to chronic pancreatitis.
Pancreas. 2010 Mar;39(2):209-15., [PMID:19812525]
Abstract [show]
OBJECTIVE: We have assessed whether CFTR gene has a major impact on chronic pancreatitis (CP) pathogenesis than that provided by the CFTR mutations. For this aim, we have evaluated clinical parameters, CFTR mutations, and 3 potential regulatory CFTR variants (coding single-nucleotide polymorphisms): c.1540A>G, c.2694T>G, and c.4521G>A. METHODS: CFTR gene analysis was performed in a cohort of 136 CP patients and 93 controls from Spanish population using current scanning techniques (single-strand conformation polymorphism/heteroduplex, denaturing gradient gel electrophoresis, and denaturing high-performance liquid chromatography) and direct sequencing. RESULTS: A higher frequency of CFTR mutations were observed in patients (39%) than in controls (15%; P < or = 0.001), differences being mostly attributable to the prevalence of the cystic fibrosis (CF)-causing mutations (P = 0.009). The analysis of variants has shown statistically significant differences between patients and controls for c.4521G>A (Pcorrected = 0.036). Furthermore, the multi-marker analysis revealed that the 1540A;2694G;4521A (AGA) haplotype was more prevalent in CP than controls (Pcorrected = 0.042). Remarkably, this association was unrelated to CF-causing mutations (P = 0.006). CONCLUSIONS: Our results corroborate the higher susceptibility of CF carriers to CP and, furthermore, suggest that the AGA haplotype could contribute to an increased risk in the development of CP irrespective of other CF-causing mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
81 CFTR Genotypes in Chronic Pancreatitis Patients and General Population Pt/Phenotype CFTR Genotype Pt/Phenotype CFTR Genotype 1/ACP F508del† , I1027T/j 19/ACP* R668C/j 2/ACP* F508del† /j 20/ACP D836Y/j 3/ACP F508del† , I1027T/Y1014C 21/ACP* L997F† /j 4/ACP F508del† /1716G9A 22/ACP* R1162L/j 5/ACP* F508del† /1716G9A 23/ACP 5T-11TG/j 6/ACP* F508del† /S1235R 24/ACP 5T-11TG/j 7/ACP G542X† /j 25/ACP 5T-11TG/j 8/ACP* W1282X† /j 26/ACP* 5T-11TG/j 9/ACP 5T-12TG† /5T-11TG 27/ACP* 5T-11TG/j 10/ACP* 5T-12TG† /j 28/ACP 1716G9A/4374+13A9G 11/ACP R75Q/j 29/ACP 1716G9A/j 12/ACP R75Q/j 30/ACP 1716G9A/j 13/ACP Y122C/Y122C 31/ACP 1716G9A/j 14/ACP* R170C/j 32/ACP 1716G9A/j 15/ACP* R258G/j 33/ACP* 1716G9A/j 16/ACP* M281T/j 34/ACP 2377C9T/j 17/ACP* R297Q† /- 35/ACP* 2377C9T/j 18/ACP T351S/- 36/ACP 3499+37G9A/j 1/ICP F508del† /- 10/ICP* 1716G9A/j 2/ICP D443Y,G576A,R668C† /j 11/ICP* 1716G9A/j 3/ICP* D443Y,G576A,R668C† /j 12/ICP 1716G9A/j 4/ICP* P205S† /j 13/ICP* 1716G9A/j 5/ICP* L997F† /j 14/ICP* 1716G9A/j 6/ICP* R170H/1716G9A 15/ICP* 1716G9A/j 7/ICP 109A9G/j 16/ICP* 1716G9A/j 8/ICP* 5T-11TG/j 17/ICP 1716G9A/j 9/ICP* 5T-11TG/j 1/GP 5T-12TG† /j 8/GP 1716G9A/j 2/GP 5T-12TG† /j 9/GP 1716G9A/j 3/GP A534E† /j 10/GP 1716G/A/j 4/GP 5T-11TG/V562I 11/GP 1716G9A/j 5/GP 5T-11TG/j 12/GP 1716G9A/j 6/GP 5T-11TG/j 13/GP 3690A9G/j 7/GP 1716G9A/j 14/GP 3690A9G/j Corresponding mutation nomenclature (Human Genome Variation Society and Cystic Fibrosis Mutation Data Base): c.1584G9A (1716G9A), c.1210-7_1210-6delTT (5T), 1210-34_1210-13TG (11TG), g.-23A9G (109A9G), c.4242+13A9G (4374+13A9G), c.2245C9T (2377C9T), c.3367+ 37G9A (3499+37G9A), and c.3558A9G (3690A9G).
X
ABCC7 p.Thr351Ser 19812525:81:856
status: NEW[hide] Do common in silico tools predict the clinical con... Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6. Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K, Yuan XW, Corey M, Tsui LC, Zielenski J, Durie P
Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene?
Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6., [PMID:20059485]
Abstract [show]
Computational methods are used to predict the molecular consequences of amino-acid substitutions on the basis of evolutionary conservation or protein structure, but their utility in clinical diagnosis or prediction of disease outcome has not been well validated. We evaluated three popular computer programs, namely, PANTHER, SIFT and PolyPhen, by comparing the predicted clinical outcomes for a group of known CFTR missense mutations against the diagnosis of cystic fibrosis (CF) and clinical manifestations in cohorts of subjects with CF-disease and CFTR-related disorders carrying these mutations. Owing to poor specificity, none of tools reliably distinguished between individual mutations that confer CF disease from mutations found in subjects with a CFTR-related disorder or no disease. Prediction scores for CFTR mutations derived from PANTHER showed a significant overall statistical correlation with the spectrum of disease severity associated with mutations in the CFTR gene. In contrast, PolyPhen- and SIFT-derived scores only showed significant differences between CF-causing and non-CF variants. Current computational methods are not recommended for establishing or excluding a CF diagnosis, notably as a newborn screening strategy or in patients with equivocal test results.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 Mutations in the CFTR gene grouped by clinical category Cystic fibrosis CFTR-related disease No disease T338I D614G L320V V920L L90S M470V H199R S1251N I203M G550R P111A I148T Q1291H R560K L1388Q L183I R170H I1027T S549R D443Y P499A L1414S T908N R668C S549N A455E E1401K Q151K G27E I1234L Y563N R347P C866R S1118C P1290S R75Q A559T V520F P841R M469V E1401G P67L G85E S50Y E1409K R933G G458V G178R Y1032C R248T I980K G85V V392G L973P L137H T351S R334W I444S V938G R792G R560T R555G L1339F D1305E P574H V1240G T1053I D58G G551D L1335P I918M F994C S945L L558S F1337V R810G D1152H G1247R P574S R766M D579G W1098R H949R F200I R352Q L1077P K1351E M244K L206W M1101K D1154G L375F N1303K R1066C E528D D110Y R347H R1070Q A800G P1021S S549K A1364V V392A damaging` (is supposed to affect protein function or structure) and 'probably damaging` (high confidence of affecting protein function or structure).
X
ABCC7 p.Thr351Ser 20059485:64:439
status: NEW[hide] Cystic fibrosis transmembrane conductance regulato... Am J Respir Crit Care Med. 2010 May 15;181(10):1078-84. Epub 2010 Feb 18. Bienvenu T, Sermet-Gaudelus I, Burgel PR, Hubert D, Crestani B, Bassinet L, Dusser D, Fajac I
Cystic fibrosis transmembrane conductance regulator channel dysfunction in non-cystic fibrosis bronchiectasis.
Am J Respir Crit Care Med. 2010 May 15;181(10):1078-84. Epub 2010 Feb 18., 2010-05-15 [PMID:20167849]
Abstract [show]
RATIONALE: Although in patients with diffuse bronchiectasis (DB) and a normal sweat test the presence of one mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is frequently observed, its pathogenic role in the development of DB remains unclear. OBJECTIVES: To evaluate the association between CFTR heterozygosity and CFTR protein dysfunction in the airways of patients with DB. METHODS: Nasal potential difference was measured in 122 patients with DB of unknown origin and with a normal sweat test (Cl(-) < 60 mmol/L). They were classified according to the presence of CFTR mutations: zero (85 patients), one (22 patients), or two mutations (15 patients). Control groups comprised 26 healthy subjects, 38 obligate heterozygotes for CFTR, and 92 patients with classic cystic fibrosis (CF) with an abnormal sweat test (Cl(-) > or = 60 mmol/L). Patients classified as mild-CF were carrying at least one mild mutation and patients classified as severe-CF were homozygous for the F508del mutation. MEASUREMENTS AND MAIN RESULTS: There was a continuum of airway CFTR dysfunction in the study population as shown by nasal potential difference measurements, ranging from normal values in healthy subjects, to intermediate values in subjects with DB, to highly abnormal values in subjects classified as severe-CF. This continuum of airway CFTR dysfunction was thus strongly associated with defects in the CFTR gene. Moreover, among patients with DB, a similar continuum in intermediate nasal potential difference was identified that was associated with the bearing of zero, one, or two CFTR mutations. These electrophysiological phenotypes and CFTR genotypes were also associated with the clinical phenotype, as shown by the frequency of Staphylococcus aureus and Pseudomonas aeruginosa bronchial colonization. CONCLUSIONS: Our study supports the hypothesis that a unique CFTR mutation may have pathogenic consequences in patients with DB.
Comments [show]
None has been submitted yet.
No. Sentence Comment
82 GENOTYPE AND PHENOTYPE OF PATIENTS WITH DIFFUSE BRONCHIECTASIS BEARING TWO CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR MUTATIONS Patient No. Age (yr) Sex (M/F) CFTR Mutations Sweat Cl2 (mmol/L) Basal PD (mV) NPD Index Age at Onset (yr) FEV1 (% pred) Bacteria Colonization 1 55 F F508del/D1152H 19 219 1.00 54 99 Sa 2 71 F F508del/G576A-R668C 29 223 0.44 70 114 None 3 24 M G542X/3849110kbCT 52 224 1.22 10 78 Pa 4 41 F 394delTT/D1152H 19 225 0.30 41 89 Sa 5 31 M 3849110kbC.T/3849110kbC.T 35 230 0.64 2 30 Sa/Pa 6 74 F G542X/S912L 40 233 0.19 60 106 None 7 50 M W1282X/D1152H 35 236 1.00 10 32 Pa 8 42 F F508del/D1152H 13 240 0.68 30 32 Pa 9 56 F F508del/IVS8-5T 30 242 0.70 10 70 None 10 45 F 394delTT/D1152H 25 242 0.71 18 62 Sa/Pa 11 74 F W1282X/D1152H 25 244 0.66 12 56 Pa 12 23 F S1206X/D1152H 19 244 0.68 13 107 None 13 41 F R553X/R851L-T351S 31 248 0.50 35 72 Pa 14 58 M F508del/R117H-7T 46 251 0.61 45 35 Sa/Pa 15 53 F F508del/R347H 49 258 0.63 40 77 Pa Definition of abbreviations: Cl2 5 chloride; F 5 female; M 5 male; NPD index 5 nasal potential difference index 5 e(response to øCl2 and iso/response to amil); a cut off .
X
ABCC7 p.Thr351Ser 20167849:82:851
status: NEW[hide] Molecular evaluation of CFTR sequence variants in ... Int J Androl. 2005 Oct;28(5):284-90. Larriba S, Bonache S, Sarquella J, Ramos MD, Gimenez J, Bassas L, Casals T
Molecular evaluation of CFTR sequence variants in male infertility of testicular origin.
Int J Androl. 2005 Oct;28(5):284-90., [PMID:16128988]
Abstract [show]
Although the involvement of the CFTR gene has been well established in congenital agenesia of vas deferens, its role in non-obstructive (NOb) infertility is still a matter of debate. In order to definitively define the involvement of the CFTR gene in spermatogenic impairment and a potential synergistic contribution to known genetic and clinical factors, genetic variants in the entire coding sequence and the immediately flanking regions of the CFTR gene, along with a thorough clinical evaluation, were analysed in 83 NOb infertile patients and 87 clinically well-defined fertile individuals as controls. The results of our study showed no statistical difference between CFTR carrier frequency in the infertile and fertile population. Specifically, the IVS8-6(5T) allele carrier frequency was similar in NOb infertile patients when compared with fertile men, but it is noteworthy that, when fertile men were classified into having optimal and suboptimal fertility, no 5T allele was found among the 35 men with optimal fertility parameters. In conclusion, extensive CFTR analysis in infertile individuals and fertile population as adequate control definitively excludes the involvement of the CFTR gene variants in sperm production and stresses the importance of carefully identifying those individuals with obstructive defects, in whom CFTR screening will be beneficial.
Comments [show]
None has been submitted yet.
No. Sentence Comment
53 Thirteen CFTR gene sequence variants [p.R75Q, p.I148T, p.T351S, p.F508del, p.G576A, p.R668C, p.E725K, p.V754M, p.D836Y, p.L997F, p.S1235R, IVS8-6(5T) and c.1716G>A] were determined in 11 F1 and 15 F2 individuals (Table 1) giving a frequency of 29.9%.
X
ABCC7 p.Thr351Ser 16128988:53:57
status: NEW85 Continued No. Phenotype CFTR genotype Associated factors Testicular histologya b c 13 F2 p.I148T p.R75Q No nd 14 F2 p.T351S No nd 15 F2 p.F508del No nd 16 F2 p.E725K No nd 17 F2 p.V754M No nd 18 F2 p.L997F No nd 19 F2 (T)5-(TG)12 No nd 20 F2 (T)5-(TG)12 No nd 21 F2 (T)5-(TG)11 No nd 22 F2 (T)5-(TG)11 No nd 23 F2 c.1716 G>A No nd 24 F2 c.1716 G>A No nd 25 F2 c.1716 G>A No nd 26 F2 c.1716 G>A No nd Phenotype: NOb (SO), non-obstructive severe oligozoospermia; NOb (A), non-obstructive azoospermia; F1, optimal fertility; F2, suboptimal fertility.
X
ABCC7 p.Thr351Ser 16128988:85:118
status: NEW[hide] Diagnostic testing by CFTR gene mutation analysis ... J Mol Diagn. 2005 May;7(2):289-99. Schrijver I, Ramalingam S, Sankaran R, Swanson S, Dunlop CL, Keiles S, Moss RB, Oehlert J, Gardner P, Wassman ER, Kammesheidt A
Diagnostic testing by CFTR gene mutation analysis in a large group of Hispanics: novel mutations and assessment of a population-specific mutation spectrum.
J Mol Diagn. 2005 May;7(2):289-99., [PMID:15858154]
Abstract [show]
Characterization of CFTR mutations in the U.S. Hispanic population is vital to early diagnosis, genetic counseling, patient-specific treatment, and the understanding of cystic fibrosis (CF) pathogenesis. The mutation spectrum in Hispanics, however, remains poorly defined. A group of 257 self-identified Hispanics with clinical manifestations consistent with CF were studied by temporal temperature gradient electrophoresis and/or DNA sequencing. A total of 183 mutations were identified, including 14 different amino acid-changing novel variants. A significant proportion (78/85) of the different mutations identified would not have been detected by the ACMG/ACOG-recommended 25-mutation screening panel. Over one third of the mutations (27/85) occurred with a relative frequency >1%, which illustrates that the identified mutations are not all rare. This is supported by a comparison with other large CFTR studies. These results underscore the disparity in mutation identification between Caucasians and Hispanics and show utility for comprehensive diagnostic CFTR mutation analysis in this population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
103 Table 1. Continued Mutations in 257 patients Allele counts of each mutation % of variant alleles (183) % of all alleles tested (514) R1070W 1 0.55 0.19 R1158X 1 0.55 0.19 R1438W 1 0.55 0.19 R334W 2 1.09 0.39 R352W 1 0.55 0.19 R553X 2 1.09 0.39 R668C 2 1.09 0.39 R74W 3 1.64 0.58 R75X 3 1.64 0.58 S1235R 2 1.09 0.39 S492F 2 1.09 0.39 S549N 1 0.55 0.19 S573CS573C 1 0.55 0.19 S945L 1 0.55 0.19 T351S 1 0.55 0.19 T501A 2 1.09 0.39 T604ST604S 1 0.55 0.19 V11I 1 0.55 0.19 V201 mol/L 1 0.55 0.19 V232D 2 1.09 0.39 V754 mol/L 1 0.55 0.19 W1089X 2 1.09 0.39 W1098C 1 0.55 0.19 W1204X 4 2.19 0.78 Y563N 1 0.55 0.19 Y913XY913X 1 0.55 0.19 85 different mutations 183 100.00 35.60 Novel variants are in boldface, mutations on the ACMG/ACOG panel are italicized.
X
ABCC7 p.Thr351Ser 15858154:103:392
status: NEW187 CFTR Sequence Variants Identified in Five Comprehensive CFTR Studies in US Hispanics CFTR mutations Alleles Relative mutation frequency (%) (of 317) deltaF508 123 38.80 3876delA 15 4.70 G542X 12 3.80 406 - 1GϾA 8 2.50 3849 ϩ 10kbCϾT 5 1.60 R75X 4 1.30 935delA 4 1.30 S549N 4 1.30 W1204X 4 1.30 R334W 4 1.30 2055del9ϾA 3 1 R74W 3 1 H199Y 3 1 L206W 3 1 663delT 3 1 3120 ϩ 1GϾA 3 1 L997F 3 1 I1027T 3 1 R1066C 3 1 W1089X 3 1 D1270N 3 1 2105del13insAGAAA 3 1 Q98R 2 Ͻ1 E116K 2 Ͻ1 I148T 2 Ͻ1 R668C 2 Ͻ1 P205S 2 Ͻ1 V232D 2 Ͻ1 S492F 2 Ͻ1 T501A 2 Ͻ1 1949del84 2 Ͻ1 Q890X 2 Ͻ1 3271delGG 2 Ͻ1 3272 - 26AϾG 2 Ͻ1 G1244E 2 Ͻ1 D1445N 2 Ͻ1 R553X 2 Ͻ1 E588V 2 Ͻ1 1717 - 8GϾA 2 Ͻ1 A1009T 2 Ͻ1 S1235R 2 Ͻ1 G85E 1 Ͻ1 296 ϩ 28AϾG 1 Ͻ1 406 - 6TϾC 1 Ͻ1 V11I 1 Ͻ1 Q179K 1 Ͻ1 V201 mol/L 1 Ͻ1 874insTACA 1 Ͻ1 I285F 1 Ͻ1 deltaF311 1 Ͻ1 F311L 1 Ͻ1 L320V 1 Ͻ1 T351S 1 Ͻ1 R352W 1 Ͻ1 1248 ϩ 1GϾA 1 Ͻ1 1249 - 29delAT 1 Ͻ1 1288insTA 1 Ͻ1 1341 ϩ 80GϾA 1 Ͻ1 1429del7 1 Ͻ1 1525 - 42GϾA 1 Ͻ1 P439S 1 Ͻ1 1717 - 1GϾA 1 Ͻ1 1811 ϩ 1GϾA 1 Ͻ1 deltaI507 1 Ͻ1 G551D 1 Ͻ1 A559T 1 Ͻ1 Y563N 1 Ͻ1 (Table continues) In this study, we used temporal temperature gradient gel electrophoresis (TTGE) and direct DNA sequencing to increase the sensitivity of mutation detection in U.S. Hispanics, and to determine whether additional mutations are recurrent.
X
ABCC7 p.Thr351Ser 15858154:187:1078
status: NEW[hide] Distinct spectrum of CFTR gene mutations in congen... Hum Genet. 1997 Sep;100(3-4):365-77. Dork T, Dworniczak B, Aulehla-Scholz C, Wieczorek D, Bohm I, Mayerova A, Seydewitz HH, Nieschlag E, Meschede D, Horst J, Pander HJ, Sperling H, Ratjen F, Passarge E, Schmidtke J, Stuhrmann M
Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens.
Hum Genet. 1997 Sep;100(3-4):365-77., [PMID:9272157]
Abstract [show]
Congenital absence of the vas deferens (CAVD) is a frequent cause for obstructive azoospermia and accounts for 1%-2% of male infertility. A high incidence of mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has recently been reported in males with CAVD. We have investigated a cohort of 106 German patients with congenital bilateral or unilateral absence of the vas deferens for mutations in the coding region, flanking intron regions and promotor sequences of the CFTR gene. Of the CAVD patients, 75% carried CFTR mutations or disease-associated CFTR variants, such as the "5T" allele, on both chromosomes. The distribution of mutation genotypes clearly differed from that observed in cystic fibrosis. None of the CAVD patients was homozygous for delta F508 and none was compound heterozygous for delta F508 and a nonsense or frameshift mutation. Instead, homozygosity was found for a few mild missense or splicing mutations, and the majority of CAVD mutations were missense substitutions. Twenty-one German CAVD patients were compound heterozygous for delta F508 and R117H, which was the most frequent CAVD genotype in our study group. Haplotype analysis indicated a common origin for R117H in our population, whereas another frequent CAVD mutation, viz. the "5T allele" was a recurrent mutation on different intragenic haplotypes and multiple ethnic backgrounds. We identified a total of 46 different mutations and variants, of which 15 mutations have not previously been reported. Thirteen novel missense mutations and one unique amino-acid insertion may be confined to the CAVD phenotype. A few splice or missense variants, such as F508C or 1716 G-->A, are proposed here as possible candidate CAVD mutations with an apparently reduced penetrance. Clinical examination of patients with CFTR mutations on both chromosomes revealed elevated sweat chloride concentrations and discrete symptoms of respiratory disease in a subset of patients. Thus, our collaborative study shows that CAVD without renal malformation is a primary genital form of cystic fibrosis in the vast majority of German patients and links the particular expression of clinical symptoms in CAVD with a distinct subset of CFTR mutation genotypes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
89 This study Variants: R75Qg G→A at 356 exon 3 2 A2 Zielenski et al. (1991b) T351S C→G at 1184 exon 7 1 C4 Mercier et al. (1993) 5Th reduction of oligoT tract to 5T at 1342-12 intron 8 26 C2, A4, D3, A2 Chu et al. (1991) F508C T→G at 1655 exon 10 3 C2 Kobayashi et al. (1990) 1716 G→A G→A at 1716 exon 10 3 D3 Kerem et al. (1990) G576Ai G→C at 1859 exon 12 2 D3 Fanen et al. (1992) R668Ci C→T at 2134 exon 13 2 D3 Fanen et al. (1992) S1235R T→G at 3837 exon 19 1 n.p. Cuppens et al. (1993) Q1352Hh G→C at 4188 exon 22 2 C2 Nukiwa and Seyama (pers. comm.) a The nomenclature of mutations follows Beaudet and Tsui (1993) The symbol "̃" is used to designate an amino-acid insertion b Nucleotides are numbered according to the cDNA sequence of Riordan et al. (1989) c Exons and introns are numbered according to Zielenski et al. (1991a) d Allele frequency is given as number of chromosomes e Haplotypes were defined as listed in B below.
X
ABCC7 p.Thr351Ser 9272157:89:82
status: NEW137 Complex alleles are indicated a One CF allele with R75X and 125G→C b One CBAVD allele with R75Q and R933S c One CBAVD allele with 5T and Q1352H d Two CF alleles with F508C and S1251N e One CF allele with 1716G→A and L619S f G576A and R668C were linked on two CBAVD and three CF alleles, whereas two additional CF alleles carried R668C together with the 3849+10kB C→T mutation (Dörk and Stuhrmann 1995) 371 Table 3 CFTR mutation genotypes in 106 males with CAVD Genotype PolyT Frequency Ethnic descent Diagnosis ∆F508/R117H 9/7 21 German, Austrian 20 CBAVD, 1 CUAVD ∆F508/5T 9/5 9 German, Austrian 8 CBAVD, 1 CUAVD ∆F508/F508C 9/7 3 German CBAVD ∆F508/R347H 9/9 2 German CBAVD ∆F508/1716 G→A 9/7 2 German CBAVD ∆F508/3272-26 A→G 9/7 2 German CBAVD ∆F508/E56K 9/7 1 German CBAVD ∆F508/M265R 9/7 1 German-Portuguese CBAVD ∆F508/R334W 9/9 1 German CBAVD ∆F508/T351S 9/9 1 German CBAVD ∆F508/L375F 9/7 1 Volga German CBAVD ∆F508/G576A & R668C 9/7 1 German CBAVD ∆F508/R933S 9/7 1 German CBAVD ∆F508/L997F 9/9 1 German CBAVD ∆F508/Y1032C 9/7 1 German CBAVD ∆F508/D1152H 9/7 1 German CBAVD ∆F508/K1351E 9/7 1 German CBAVD ∆F508/D1377H 9/7 1 Portuguese CBAVD ∆F508/L1388Q 9/7 1 German CBAVD ∆F508/unknown 9/7 4 German 3 CBAVD, 1 CUAVD 5T/5T 5/5 2 German CBAVD 5T/G542X 5/9 2 German, Turkish CBAVD 5T/D58N 5/7 1 Lebanese CBAVD 5T/̃L138 5/7 1 German-Polish CBAVD 5T/1078delT 5/7 1 German CBAVD 5T/R553X 5/7 1 German CBAVD 5T/2184insA 5/7 1 Turkish CBAVD 5T/D979A 5/7 1 Vietnamese CBAVD 5T/D1152H 5/7 1 Turkish CBAVD 5T/3659delC 5/7 1 German CBAVD 5T/S1235R 5/7 1 Greek CBAVD 5T/W1282X 5/7 1 German CBAVD 5T & Q1352H/ R297W & Q1352H 5/7 1 Vietnamese CBAVD 5T/unknown 5/7 1 German CBAVD R117H/L206W 7/9 1 German CBAVD R117H/2789+5 G→A 7/7 1 German CBAVD R117H/unknown 7/7 1 German CBAVD 2789+5 G→A/2789+5 G→A 7/7 1 Lebanese CBAVD 2789+5 G→A/L973F 7/7 1 German CBAVD V938G/V938G 7/7 1 Greek CBAVD V938G/174delA 7/7 1 German CBAVD D110H/D110H 7/7 1 Turkish CBAVD R334L/I336K 7/7 1 German CBAVD R347H/N1303K 9/9 1 German CBAVD L568F/D1152H 7/7 1 Turkish CBAVD 3272-26 A→G/V1153E 7/7 1 German CBAVD R75Q/unknown 7/7 1 German CBAVD A120T/unknown 9/7 1 German CBAVD 1716G→A/unknown 7/7 1 German CBAVD G576A & R668C/unknown 7/7 1 German CBAVD 2752-15 C→G/unknown 7/7 1 Iranian CBAVD Unknown/unknown 17 German, Turkish 7 CBAVD and 1 CUAVD without observed renal agenesis, 9 CBAVD with renal agenesis allele and the R297W mutation on a homozygous Q1352H background may then reduce CFTR function to a disease-causing level.
X
ABCC7 p.Thr351Ser 9272157:137:967
status: NEW