ABCC7 p.Val510Ala

Predicted by SNAP2: A: N (82%), C: N (72%), D: N (57%), E: N (72%), F: N (72%), G: N (72%), H: N (66%), I: N (93%), K: N (82%), L: N (87%), M: N (87%), N: N (72%), P: N (66%), Q: N (82%), R: N (78%), S: N (72%), T: N (87%), W: D (66%), Y: N (78%),
Predicted by PROVEAN: A: N, C: N, D: N, E: N, F: N, G: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, W: N, Y: N,

[switch to compact view]
Comments [show]
Publications
[hide] Wang Y, Loo TW, Bartlett MC, Clarke DM
Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein.
J Biol Chem. 2007 Nov 16;282(46):33247-51. Epub 2007 Oct 2., 2007-11-16 [PMID:17911111]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loo TW, Bartlett MC, Clarke DM
Correctors promote folding of the CFTR in the endoplasmic reticulum.
Biochem J. 2008 Jul 1;413(1):29-36., 2008-07-01 [PMID:18361776]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loo TW, Bartlett MC, Clarke DM
Processing mutations disrupt interactions between the nucleotide binding and transmembrane domains of P-glycoprotein and the cystic fibrosis transmembrane conductance regulator (CFTR).
J Biol Chem. 2008 Oct 17;283(42):28190-7. Epub 2008 Aug 16., 2008-10-17 [PMID:18708637]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Li MS, Demsey AF, Qi J, Linsdell P
Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate.
Br J Pharmacol. 2009 Jul;157(6):1065-71. Epub 2009 May 19., [PMID:19466983]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, Wu J, Bernard K, Li G, Wang G, Bevensee MO, Kirk KL
ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3888-93. Epub 2010 Feb 3., 2010-02-23 [PMID:20133716]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Zhou JJ, Li MS, Qi J, Linsdell P
Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore.
J Gen Physiol. 2010 Mar;135(3):229-45. Epub 2010 Feb 8., [PMID:20142516]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Bai Y, Li M, Hwang TC
Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
J Gen Physiol. 2010 Sep;136(3):293-309., [PMID:20805575]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang G
State-dependent regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gating by a high affinity Fe3+ bridge between the regulatory domain and cytoplasmic loop 3.
J Biol Chem. 2010 Dec 24;285(52):40438-47. Epub 2010 Oct 15., 2010-12-24 [PMID:20952391]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang G
The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2011 Jan 21;286(3):2171-82. Epub 2010 Nov 8., 2011-01-21 [PMID:21059651]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loo TW, Clarke DM
Repair of CFTR folding defects with correctors that function as pharmacological chaperones.
Methods Mol Biol. 2011;741:23-37., [PMID:21594776]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Qian F, El Hiani Y, Linsdell P
Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
Pflugers Arch. 2011 Oct;462(4):559-71. Epub 2011 Jul 28., [PMID:21796338]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Holstead RG, Li MS, Linsdell P
Functional Differences in Pore Properties Between Wild-Type and Cysteine-Less Forms of the CFTR Chloride Channel.
J Membr Biol. 2011 Oct;243(1-3):15-23. Epub 2011 Jul 28., [PMID:21796426]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang G, Duan DD
Regulation of Activation and Processing of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by a Complex Electrostatic Interaction between the Regulatory Domain and Cytoplasmic Loop 3.
J Biol Chem. 2012 Oct 11., [PMID:23060444]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, Linsdell P
Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7).
J Biol Chem. 2012 Mar 23;287(13):10156-65. Epub 2012 Feb 1., [PMID:22303012]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, Linsdell P
Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
Biochim Biophys Acta. 2012 Mar;1818(3):851-60. Epub 2012 Jan 2., [PMID:22234285]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, El Hiani Y, Linsdell P
Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Gen Physiol. 2011 Aug;138(2):165-78. Epub 2011 Jul 11., [PMID:21746847]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cui G, Freeman CS, Knotts T, Prince CZ, Kuang C, McCarty NA
Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function.
J Biol Chem. 2013 Jul 12;288(28):20758-67. doi: 10.1074/jbc.M113.476226. Epub 2013 May 24., [PMID:23709221]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, El Hiani Y, Rubaiy HN, Linsdell P
Relative contribution of different transmembrane segments to the CFTR chloride channel pore.
Pflugers Arch. 2014 Mar;466(3):477-90. doi: 10.1007/s00424-013-1317-x. Epub 2013 Aug 20., [PMID:23955087]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loo TW, Clarke DM
The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
Biochem Pharmacol. 2014 Mar 1;88(1):46-57. doi: 10.1016/j.bcp.2013.12.027. Epub 2014 Jan 9., [PMID:24412276]

Abstract [show]
Comments [show]
Sentences [show]

[hide] El Hiani Y, Linsdell P
Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.
J Biol Chem. 2014 Oct 10;289(41):28149-59. doi: 10.1074/jbc.M114.593103. Epub 2014 Aug 20., [PMID:25143385]

Abstract [show]
Comments [show]
Sentences [show]

[hide] El Hiani Y, Linsdell P
Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.
J Biol Chem. 2015 Jun 19;290(25):15855-65. doi: 10.1074/jbc.M115.656181. Epub 2015 May 5., [PMID:25944907]

Abstract [show]
Comments [show]
Sentences [show]