ABCC7 p.Ser222Gly
Predicted by SNAP2: | A: N (53%), C: D (71%), D: D (80%), E: D (85%), F: D (66%), G: D (66%), H: D (85%), I: D (71%), K: D (85%), L: D (80%), M: D (80%), N: N (66%), P: D (85%), Q: D (80%), R: D (85%), T: N (57%), V: D (80%), W: D (91%), Y: D (85%), |
Predicted by PROVEAN: | A: N, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: N, P: D, Q: D, R: D, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Role of the extracellular loop in the folding of a... Biochemistry. 2007 Jun 19;46(24):7099-106. Epub 2007 May 22. Wehbi H, Rath A, Glibowicka M, Deber CM
Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
Biochemistry. 2007 Jun 19;46(24):7099-106. Epub 2007 May 22., 2007-06-19 [PMID:17516627]
Abstract [show]
The folding of membrane-spanning domains into their native functional forms depends on interactions between transmembrane (TM) helices joined by covalent loops. However, the importance of these covalent linker regions in mediating the strength of helix-helix associations has not been systematically addressed. Here we examine the potential structural impact of cystic fibrosis-phenotypic mutations in the extracellular loop 2 (ECL2) on interactions between the TM3 and TM4 helices of the cystic fibrosis transmembrane conductance regulator (CFTR) in constructs containing CFTR residues 194-241. When the effects of replacements in ECL2 (including the CF-phenotypic mutants E217G and Q220R) were evaluated in a library of wild-type and mutant TM3-ECL2-TM4 hairpin constructs, we found that SDS-PAGE gel migration rates differed over a range of nearly 40% +/- the wild-type position and that decreased migration rates correlate with increasing hairpin alpha-helical content as measured by circular dichroism spectra in sodium dodecyl sulfate micelles. The decreased mobility of TM3/4 constructs by introduction of non-native residues is interpreted in terms of an elongation or "opening" of the helical hairpin and concomitant destabilization of membrane-based helix-helix interactions. Our results support a role for short loop regions in dictating the stability of membrane protein folds and highlight the interplay between membrane-embedded helix-helix interactions and loop conformation in influencing the structure of membrane proteins.
Comments [show]
None has been submitted yet.
No. Sentence Comment
97 When the changes in TM3/4 WT hairpin migration were compared to changes in overall hairpin helicity, a strong correlation (R ) 0.79) was observed (Figure 5), leading us to propose that increases in non-native R-helix structure within ECL2 might Table 1: Migration Behavior on SDS-PAGE Gels of Single and Double Mutants in the Loop Region of CFTR TM3/4 Constructs % change in apparent MW on SDS-PAGE mutant vs TM3/4 WT in WT loop mutantsa vs TM3/4 V232D in V232D loop mutantsa Pb E217G 6.8 ( 0.7 E217S 11.1 ( 3.4 5.4 ( 1.4 0.056 Q220R 15.2 ( 1.1 Q220G 0.3 ( 0.4 Q220N 2.1 ( 1.3 0.5 ( 0.3 0.108 Q220K 14.1 ( 1.0 Q220W 13.1 ( 1.3 11.5 ( 0.9 0.157 Q220E -11.1 ( 1.1 -4.0 ( 0.3 <0.001 S222G 12.0 ( 2.1 1.1 ( 0.6 0.001 S222E -0.3 ( 2.4 1.3 ( 0.5 0.512 E217G/S222G 12.4 ( 1.9 E217S/S222E 26.1 ( 4.5 averagec 10.4 ( 7.3 4.0 ( 4.2 0.067 a Values are the percentage difference vs TM3/4 WT or TM3/4 V232D migration of SDS-PAGE gels.
X
ABCC7 p.Ser222Gly 17516627:97:680
status: NEWX
ABCC7 p.Ser222Gly 17516627:97:752
status: NEW116 We found that the Q220E, S222G, and E217S replacements exhibited a relatively less pronounced effect on migration in the TM3/4 V232D hairpin than the TM3/4 WT background with high (p < 0.01 for Q220E and S222G) or detectable but marginal (p ) 0.056 for E217S) statistical significance.
X
ABCC7 p.Ser222Gly 17516627:116:25
status: NEWX
ABCC7 p.Ser222Gly 17516627:116:204
status: NEW139 Several sets of experi- FIGURE 6: SDS-PAGE migration of S222G and Q220W replacements in the TM3/4 WT and TM3/4 V232D backgrounds.
X
ABCC7 p.Ser222Gly 17516627:139:56
status: NEW140 Hairpins containing ECL2 mutants S222G and Q220W in the TM3/4 WT background and in the TM3/4 V232D background are shown.
X
ABCC7 p.Ser222Gly 17516627:140:33
status: NEW147 For example, S222E and WT migrate at approximately the same rate, but Q220E moves at -11% vs WT; both S222G and E217G/S222G are at +12%; Q220K, Q220R, and Q220W are each at +13-15%.
X
ABCC7 p.Ser222Gly 17516627:147:102
status: NEWX
ABCC7 p.Ser222Gly 17516627:147:118
status: NEW