ABCC7 p.Lys684Leu
Predicted by SNAP2: | A: N (61%), C: D (53%), D: D (53%), E: N (57%), F: N (57%), G: N (53%), H: N (82%), I: N (66%), L: N (66%), M: N (72%), N: N (78%), P: N (53%), Q: N (72%), R: N (87%), S: N (66%), T: N (66%), V: N (66%), W: D (63%), Y: N (61%), |
Predicted by PROVEAN: | A: N, C: N, D: N, E: N, F: N, G: N, H: N, I: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Insight in eukaryotic ABC transporter function by ... FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19. Frelet A, Klein M
Insight in eukaryotic ABC transporter function by mutation analysis.
FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19., 2006-02-13 [PMID:16442101]
Abstract [show]
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
135 K684L (NBD1) and K1333L (NBD2) diminished nucleotide-binding abilities.
X
ABCC7 p.Lys684Leu 16442101:135:0
status: NEW[hide] Replacement of the positively charged Walker A lys... Biochem J. 2006 Jul 1;397(1):121-30. Buyse F, Hou YX, Vigano C, Zhao Q, Ruysschaert JM, Chang XB
Replacement of the positively charged Walker A lysine residue with a hydrophobic leucine residue and conformational alterations caused by this mutation in MRP1 impair ATP binding and hydrolysis.
Biochem J. 2006 Jul 1;397(1):121-30., 2006-07-01 [PMID:16551273]
Abstract [show]
MRP1 (multidrug resistance protein 1) couples ATP binding/hydrolysis at its two non-equivalent NBDs (nucleotide-binding domains) with solute transport. Some of the NBD1 mutants, such as W653C, decreased affinity for ATP at the mutated site, but increased the rate of ATP-dependent solute transport. In contrast, other NBD1 mutants, such as K684L, had decreased ATP binding and rate of solute transport. We now report that mutations of the Walker A lysine residue, K684L and K1333L, significantly alter the tertiary structure of the protein. Due to elimination of the positively charged group and conformational alterations, the K684L mutation greatly decreases the affinity for ATP at the mutated NBD1 and affects ATP binding at the unmutated NBD2. Although K684L-mutated NBD1 can bind ATP at higher concentrations, the bound nucleotide at that site is not efficiently hydrolysed. All these alterations result in decreased ATP-dependent solute transport to approx. 40% of the wild-type. In contrast, the K1333L mutation affects ATP binding and hydrolysis at the mutated NBD2 only, leading to decreased ATP-dependent solute transport to approx. 11% of the wild-type. Consistent with their relative transport activities, the amount of vincristine accumulated in cells is in the order of K1333L> or =CFTR (cystic fibrosis transmembrane conductance regulator)>K684L>>>wild-type MRP1. Although these mutants retain partial solute transport activities, the cells expressing them are not multidrug-resistant owing to inefficient export of the anticancer drugs by these mutants. This indicates that even partial inhibition of transport activity of MRP1 can reverse the multidrug resistance caused by this drug transporter.
Comments [show]
None has been submitted yet.
No. Sentence Comment
47 Cell culture and cell lines expressing MRP1 Cell lines expressing wild-type, K684L- and K1333L-mutated MRP1s and CFTR (cystic fibrosis transmembrane conductance regulator) were established previously [16,24,25] (but see [25a]).
X
ABCC7 p.Lys684Leu 16551273:47:77
status: NEW120 Since the amounts of MRP1 proteins in the membrane vesicles containing wild-type, K684L- and K1333L-mutated MRP1 were different, they were adjusted to a similar amount of MRP1 with membrane vesicles containing CFTR (1.692 µg of wild-type MRP1 + 1.308 µg of CFTR; 3 µg of K684L; 1.05 µg of K1333L + 1.95 µg of CFTR; 3 µg of CFTR) to determine the ATP-dependent LTC4 transport activity.
X
ABCC7 p.Lys684Leu 16551273:120:286
status: NEW186 Cells expressing K684L- or K1333L-mutated MRP1s are not multidrug-resistant Considering that the transport activities of K684L, K1333L and CFTR (or parental BHK) are approx.
X
ABCC7 p.Lys684Leu 16551273:186:17
status: NEWX
ABCC7 p.Lys684Leu 16551273:186:121
status: NEW