ABCC7 p.Gln1238Arg
ClinVar: |
c.3713A>G
,
p.Gln1238Arg
?
, not provided
c.3712C>T , p.Gln1238* D , Pathogenic |
CF databases: |
c.3713A>G
,
p.Gln1238Arg
(CFTR1)
?
, This mutation was identified by DGGE and direct sequencing. The nucleotide change A->G at position 3845 leads to Q1238R in exon 19. This mutation creates a MspI restriction site.
|
Predicted by SNAP2: | A: D (59%), C: N (61%), D: N (57%), E: N (93%), F: D (66%), G: D (66%), H: N (57%), I: D (63%), K: D (59%), L: N (66%), M: D (53%), N: D (59%), P: D (75%), R: D (66%), S: N (57%), T: N (53%), V: D (53%), W: N (57%), Y: D (63%), |
Predicted by PROVEAN: | A: D, C: D, D: N, E: N, F: D, G: D, H: N, I: D, K: N, L: D, M: D, N: N, P: D, R: N, S: N, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Polymorphisms of MRP1 (ABCC1) and related ATP-depe... Pharmacogenet Genomics. 2005 Aug;15(8):523-33. Conseil G, Deeley RG, Cole SP
Polymorphisms of MRP1 (ABCC1) and related ATP-dependent drug transporters.
Pharmacogenet Genomics. 2005 Aug;15(8):523-33., [PMID:16006996]
Abstract [show]
Genetic variations in drug metabolizing enzymes and targets are established determinants of adverse drug reactions and interactions, but less is known about the role of genetic polymorphisms in membrane transport proteins. MRP1 (ABCC1) is one of 13 polytopic membrane proteins that comprise the 'C' subfamily of the ATP-binding cassette (ABC) superfamily of transport proteins. MRP1 and related ABCC family members, including MRP2, 3, 4 and 5 (ABCC2, 3, 4 and 5), each have a distinctive pattern of tissue expression and substrate specificity. Together, these five transporters play important roles in the disposition and elimination of drugs and other organic anions, and in maintenance of blood-tissue barriers, as confirmed by enhanced chemosensitivity of respective knockout mice. Moreover, Mrp2 (Abcc2) deficient animals display mild conjugated hyperbilirubinemia, corresponding to a human condition known as Dubin-Johnson syndrome (DJS). Naturally occurring mutations in MRP/ABCC-related drug transporters have been reported, some of which are non-synonymous single nucleotide polymorphisms. The consequences of the resulting amino acid changes can sometimes be predicted from in vitro site-directed mutagenesis studies or from knowledge of mutations of analogous (conserved) residues in ABCC proteins that cause DJS, Pseudoxanthoma elasticum (ABCC6), cystic fibrosis (CFTR/ABCC7) or persistent hyperinsulinemic hypoglycemia of infancy (SUR1/ABCC8). Continual updating of databases of sequence variants and haplotype analysis, together with in vitro biochemical validation assays and pharmacological studies in knockout animals, should make it possible to determine how genetic variation in the MRP-related transporters contributes to the range of responses to drugs and chemicals observed in different human populations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 In the kidney, glomeruli and distal collecting tubules express MRP1, and, in the brain, MRP1 appears to form part of the drug permeability barrier Fig. 1 CF (CFTR/ABCC7) Q1291R E1228G Q1238R G1244E/V G1247R G1249R S1251N S1255P/L W1282G/R/C R1283K/M N1303K Y1307C E1321Q K1351E Q1352H R1268Q V1298F T1301I G1302R A1303P R1314W/Q G1321S R1339C Q1347H I1350L G1354R D1361N Q1382R A1450T R1347E R1351P V1359G/M S1368A G1377R G1382S R1392H R1419C R1435Q G1477R G1479R R1492W E1505K DJS (MRP2/ABCC2) NBD1 NBD2 COOH MEMBRANE MSD MSD MSD 12131415161710116 7 8 91 23 4 5TM H2 N Extracellular Intracellular PXE (ABCC6) PHHI (SUR1/ABCC8) Two-dimensional structure of MRP-related proteins.
X
ABCC7 p.Gln1238Arg 16006996:56:184
status: NEW[hide] Spectrum of CFTR mutations in cystic fibrosis and ... Hum Mutat. 2000;16(2):143-56. Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD
Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France.
Hum Mutat. 2000;16(2):143-56., [PMID:10923036]
Abstract [show]
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
109 h M1K, K14X, W19X, 211delG, G27E, R31C, 237insA, 241delAT, Q39X, 244delTA, 296+2T>C, 297-3C>T, W57X+F87L, 306delTAGA, P67L, A72D, 347delC, R75Q, 359insT, 394delT, 405+4A>G, Q98R, 457TAT>G, R117H+5T, R117H+I1027T, R117L, R117P, H139R, A141D, M152V, N186K, D192N, D192del, E193X, 711+1G>A, 711+3A>G, 712-1G>T, L206F, W216X, C225R, Q237E, G241R, 852del22, 876-14del12, 905delG, 993del5, E292K, Y304X, F311del, 1161delC, R347L, R352Q, W361R, 1215delG, S364P, S434X, D443Y, S466X, C491R, T501A, I506T, F508C, I507del+F508C, F508del+L467F, 1774delCT, R553G, 1802delC, 1806delA, A559E, Y563N, 1833delT, Y569C, Y569H, Y569X, G576X, G576A, T582I, 1898+3A>G+186-13C>G, 1918delGC, R600G, L610S, G628R, 2043delG, 2118del4, E664X, 2174insA, Q689X, K698R, K716X, L732X, 2347delG, 2372del8, R764X, 2423delG, S776X, 2634insT, 2640delT, C866Y, 2752-1G>T, W882X, Y913C, V920M, 2896insAG, H939D, H939R, D979V, D985H, D993Y, 3120G>A, I1005R, 3195del6, 3293delA, 3320ins5, W1063X, A1067T, 3359delCT, T1086I, W1089X, Y1092X+S1235R, W1098X, E1104X, R1128X, 3532AC>GTA, 3548TCAT>G, M1140del, 3600G>A, R1162L, 3667ins4, 3732delA+K1200E, S1206X, 3791delC, S1235R+5T, Q1238R, Q1238X, 3849+4A>G, T1246I, 3869insG, S1255P, R1283K, F1286S, 4005+1G>T, 4006-8T>A, 4015delA, N1303H, N1303I, 4172delGC, 4218insT, 4326delTC, Q1382X, 4375-1C>T, 4382delA, D1445N, CF40kbdel4-10, Cfdel17b.
X
ABCC7 p.Gln1238Arg 10923036:109:1141
status: NEW[hide] Genetic, cell biological, and clinical interrogati... Genet Med. 2014 Aug;16(8):625-32. doi: 10.1038/gim.2014.4. Epub 2014 Feb 20. Molinski SV, Gonska T, Huan LJ, Baskin B, Janahi IA, Ray PN, Bear CE
Genetic, cell biological, and clinical interrogation of the CFTR mutation c.3700 A>G (p.Ile1234Val) informs strategies for future medical intervention.
Genet Med. 2014 Aug;16(8):625-32. doi: 10.1038/gim.2014.4. Epub 2014 Feb 20., [PMID:24556927]
Abstract [show]
PURPOSE: The purpose of this study was to determine the molecular consequences of the variant c.3700 A>G in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, a variant that has been predicted to cause a missense mutation in the CFTR protein (p.Ile1234Val). METHODS: Clinical assays of CFTR function were performed, and genomic DNA from patients homozygous for c.3700 A>G and their family members was sequenced. Total RNA was extracted from epithelial cells of the patients, transcribed into complementary DNA, and sequenced. CFTR complementary DNA clones containing the missense mutation p.Ile1234Val or a truncated exon 19 (p.Ile1234_Arg1239del) were constructed and heterologously expressed to test CFTR protein synthesis and processing. RESULTS: In vivo functional measurements revealed that the individuals homozygous for the variant c.3700 A>G exhibited defective CFTR function. We show that this mutation in exon 19 activates a cryptic donor splice site 18 bp upstream of the original donor splice site, resulting in deletion of six amino acids (r.3700_3717del; p.Ile1234_Arg1239del). This deletion, similar to p.Phe508del, causes a primary defect in folding and processing. Importantly, Lumacaftor (VX-809), currently in clinical trial for cystic fibrosis patients with the major cystic fibrosis-causing mutation, p.Phe508del, partially ameliorated the processing defect caused by p.Ile1234_Arg1239del. CONCLUSION: These studies highlight the need to verify molecular and clinical consequences of CFTR variants to define possible therapeutic strategies.
Comments [show]
None has been submitted yet.
No. Sentence Comment
131 Interestingly, the CF Mutation Database5 contains several disease-associated mutations within the p.Ile1234_Arg1239 sequence and includes c.3705T>G (p.Ser1235Arg), c.3709G>A (p.Gly1237Ser), c.3713A>G (p.Gln1238Arg), c.3712C>T (p.Gln1238X), and c.3717G>C (p.Arg1239Ser).
X
ABCC7 p.Gln1238Arg 24556927:131:203
status: NEW