ABCC7 p.Cys1344Ala

Predicted by SNAP2: A: N (93%), D: N (72%), E: N (82%), F: N (87%), G: N (87%), H: N (93%), I: N (93%), K: N (78%), L: N (87%), M: N (93%), N: N (87%), P: N (61%), Q: N (87%), R: N (78%), S: N (93%), T: N (93%), V: N (93%), W: N (78%), Y: N (93%),
Predicted by PROVEAN: A: N, D: N, E: N, F: N, G: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: N, Y: N,

[switch to compact view]
Comments [show]
Publications
[hide] Wang W, Oliva C, Li G, Holmgren A, Lillig CH, Kirk KL
Reversible silencing of CFTR chloride channels by glutathionylation.
J Gen Physiol. 2005 Feb;125(2):127-41. Epub 2005 Jan 18., [PMID:15657297]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Melani R, Tomati V, Galietta LJ, Zegarra-Moran O
Modulation of cystic fibrosis transmembrane conductance regulator (CFTR) activity and genistein binding by cytosolic pH.
J Biol Chem. 2010 Dec 31;285(53):41591-6. Epub 2010 Oct 25., 2010-12-31 [PMID:20974851]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Okeyo G, Wang W, Wei S, Kirk KL
Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations.
J Biol Chem. 2013 Jun 14;288(24):17122-33. doi: 10.1074/jbc.M112.442582. Epub 2013 Apr 25., [PMID:23620589]

Abstract [show]
Comments [show]
Sentences [show]