ABCC7 p.Lys95Cys

Predicted by SNAP2: A: D (75%), C: D (75%), D: D (91%), E: D (85%), F: D (85%), G: D (85%), H: D (53%), I: D (80%), L: D (80%), M: D (75%), N: D (80%), P: D (91%), Q: D (75%), R: N (66%), S: D (63%), T: D (80%), V: D (80%), W: D (91%), Y: D (71%),
Predicted by PROVEAN: A: N, C: D, D: N, E: N, F: D, G: D, H: N, I: D, L: D, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Linsdell P
Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Biol Chem. 2005 Mar 11;280(10):8945-50. Epub 2005 Jan 5., 2005-03-11 [PMID:15634668]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Zhou JJ, Li MS, Qi J, Linsdell P
Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore.
J Gen Physiol. 2010 Mar;135(3):229-45. Epub 2010 Feb 8., [PMID:20142516]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Qian F, El Hiani Y, Linsdell P
Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
Pflugers Arch. 2011 Oct;462(4):559-71. Epub 2011 Jul 28., [PMID:21796338]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Sheppard DN, Welsh MJ
Structure and function of the CFTR chloride channel.
Physiol Rev. 1999 Jan;79(1 Suppl):S23-45., [PMID:9922375]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Dawson DC, Smith SS, Mansoura MK
CFTR: mechanism of anion conduction.
Physiol Rev. 1999 Jan;79(1 Suppl):S47-75., [PMID:9922376]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Norimatsu Y, Ivetac A, Alexander C, O'Donnell N, Frye L, Sansom MS, Dawson DC
Locating a Plausible Binding Site for an Open Channel Blocker, GlyH-101, in the Pore of the Cystic Fibrosis Transmembrane Conductance Regulator.
Mol Pharmacol. 2012 Aug 24., [PMID:22923500]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, Linsdell P
Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
Biochim Biophys Acta. 2012 Mar;1818(3):851-60. Epub 2012 Jan 2., [PMID:22234285]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, El Hiani Y, Linsdell P
Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Gen Physiol. 2011 Aug;138(2):165-78. Epub 2011 Jul 11., [PMID:21746847]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Akabas MH, Kaufmann C, Cook TA, Archdeacon P
Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 1994 May 27;269(21):14865-8., [PMID:7515047]

Abstract [show]
Comments [show]
Sentences [show]

[hide] El Hiani Y, Linsdell P
Tuning of CFTR chloride channel function by location of positive charges within the pore.
Biophys J. 2012 Oct 17;103(8):1719-26. doi: 10.1016/j.bpj.2012.09.020. Epub 2012 Oct 16., [PMID:23083715]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gao X, Bai Y, Hwang TC
Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.
Biophys J. 2013 Feb 19;104(4):786-97. doi: 10.1016/j.bpj.2012.12.048., [PMID:23442957]

Abstract [show]
Comments [show]
Sentences [show]

[hide] El Hiani Y, Linsdell P
Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.
J Biol Chem. 2014 Oct 10;289(41):28149-59. doi: 10.1074/jbc.M114.593103. Epub 2014 Aug 20., [PMID:25143385]

Abstract [show]
Comments [show]
Sentences [show]