ABCC7 p.Lys95Met
Predicted by SNAP2: | A: D (75%), C: D (75%), D: D (91%), E: D (85%), F: D (85%), G: D (85%), H: D (53%), I: D (80%), L: D (80%), M: D (75%), N: D (80%), P: D (91%), Q: D (75%), R: N (66%), S: D (63%), T: D (80%), V: D (80%), W: D (91%), Y: D (71%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: D, H: N, I: D, L: D, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Location of a common inhibitor binding site in the... J Biol Chem. 2005 Mar 11;280(10):8945-50. Epub 2005 Jan 5. Linsdell P
Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Biol Chem. 2005 Mar 11;280(10):8945-50. Epub 2005 Jan 5., 2005-03-11 [PMID:15634668]
Abstract [show]
Chloride transport by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is inhibited by a broad range of organic anions that enter the channel pore from its cytoplasmic end, physically occluding the Cl- permeation pathway. These open channel blocker molecules are presumed to bind within a relatively wide pore inner vestibule that shows little discrimination between different large anions. The present study uses patch clamp recording to identify a pore-lining lysine residue, Lys-95, that acts to attract large blocker molecules into this inner vestibule. Mutations that remove the fixed positive charge associated with this amino acid residue dramatically weaken the blocking effects of five structurally unrelated open channel blockers (glibenclamide, 4,4'-dinitrostilbene-2,2'-disulfonic acid, lonidamine, 5-nitro-2-(3-phenylpropylamino)benzoic acid, and taurolithocholate-3-sulfate) when applied to the cytoplasmic face of the membrane. Mutagenesis of Lys-95 also induced amino acid side chain charge-dependent rectification of the macroscopic current-voltage relationship, consistent with the fixed positive charge on this residue normally acting to attract Cl- ions from the intracellular solution into the pore. These results identify Lys-95 as playing an important role in attracting permeant anions into the channel pore inner vestibule, probably by an electrostatic mechanism. This same electrostatic attraction mechanism also acts to attract larger anionic molecules into the relatively wide inner vestibule, where these substances bind to block Cl- permeation. Thus, structurally diverse open channel blockers of CFTR appear to share a common molecular mechanism of action that involves interaction with a positively charged amino acid side chain located in the inner vestibule of the pore.
Comments [show]
None has been submitted yet.
No. Sentence Comment
83 Because of low current expression in baby hamster kidney cell membrane patches, K95M was not included in this analysis.
X
ABCC7 p.Lys95Met 15634668:83:80
status: NEW