ABCC7 p.Cys524Ser
ClinVar: |
c.1572C>A
,
p.Cys524*
D
, Pathogenic
|
CF databases: |
c.1572C>A
,
p.Cys524*
D
, CF-causing
|
Predicted by SNAP2: | A: D (63%), D: D (91%), E: D (91%), F: D (91%), G: D (85%), H: D (91%), I: D (85%), K: D (91%), L: D (91%), M: D (85%), N: D (85%), P: D (91%), Q: D (91%), R: D (91%), S: D (80%), T: D (80%), V: N (53%), W: D (91%), Y: D (91%), |
Predicted by PROVEAN: | A: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Insight in eukaryotic ABC transporter function by ... FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19. Frelet A, Klein M
Insight in eukaryotic ABC transporter function by mutation analysis.
FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19., 2006-02-13 [PMID:16442101]
Abstract [show]
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
308 C524S has no effect.
X
ABCC7 p.Cys524Ser 16442101:308:0
status: NEW[hide] The DeltaF508 mutation disrupts packing of the tra... J Biol Chem. 2004 Sep 17;279(38):39620-7. Epub 2004 Jul 21. Chen EY, Bartlett MC, Loo TW, Clarke DM
The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2004 Sep 17;279(38):39620-7. Epub 2004 Jul 21., 2004-09-17 [PMID:15272010]
Abstract [show]
The most common mutation in cystic fibrosis (deletion of Phe-508 in the first nucleotide binding domain (DeltaF508)) in the cystic fibrosis transmembrane conductance regulator (CFTR) causes retention of the mutant protein in the endoplasmic reticulum. We previously showed that the DeltaF508 mutation causes the CFTR protein to be retained in the endoplasmic reticulum in an inactive and structurally altered state. Proper packing of the transmembrane (TM) segments is critical for function because the TM segments form the chloride channel. Here we tested whether the DeltaF508 mutation altered packing of the TM segments by disulfide cross-linking analysis between TM6 and TM12 in wild-type and DeltaF508 CFTRs. These TM segments were selected because TM6 appears to line the chloride channel, and cross-linking between these TM segments has been observed in the CFTR sister protein, the multidrug resistance P-glycoprotein. We first mapped potential contact points in wild-type CFTR by cysteine mutagenesis and thiol cross-linking analysis. Disulfide cross-linking was detected in CFTR mutants M348C(TM6)/T1142C(TM12), T351C(TM6)/T1142C(TM12), and W356C(TM6)/W1145C(TM12) in a wild-type background. The disulfide cross-linking occurs intramolecularly and was reducible by dithiothreitol. Introduction of the DeltaF508 mutation into these cysteine mutants, however, abolished cross-linking. The results suggest that the DeltaF508 mutation alters interactions between the TM domains. Therefore, a potential target to correct folding defects in the DeltaF508 mutant of CFTR is to identify compounds that promote correct folding of the TM domains.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 The construction of Cys-less CFTR (C76S/C126S/C225S/C276S/C343S/C491S/C524S/C590S/C592S/C657S/C832S/C866S/C1344S/C1355S/C1395S/C1400S/C1410S/C1458S) was performed using the following cDNA fragments.
X
ABCC7 p.Cys524Ser 15272010:57:70
status: NEW58 Point mutations C76/126S were generated in sequence in the PstI (bp 1) 3 XbaI (bp 573) fragment; point mutations C225S/C276S/C343S were generated in sequence in the XbaI (bp 573) 3 KpnI (bp 1370) fragment; point mutations C491S/C524S/C590S/C592S/C657S were generated in sequence in the KpnI (bp 1370) 3 ApaI (bp 2333) fragment; point mutations C832S/C866S were generated in sequence in the ApaI (bp 2333) 3 EcoRI (bp 3643) fragment; point mutations C1344S/C1355S/ C1395S/C1400S/C1410S/C1458S were generated in sequence in the EcoRI (bp 3643) 3 XhoI (bp 4560) fragment, the five insert fragments were then ligated and inserted into the PstI and XhoI sites of plasmid vector pMT21.
X
ABCC7 p.Cys524Ser 15272010:58:228
status: NEW[hide] Cystic fibrosis transmembrane conductance regulato... Biochemistry. 2009 Oct 27;48(42):10078-88. Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC
Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore.
Biochemistry. 2009 Oct 27;48(42):10078-88., 2009-10-27 [PMID:19754156]
Abstract [show]
The sixth transmembrane segment (TM6) of the CFTR chloride channel has been intensively investigated. The effects of amino acid substitutions and chemical modification of engineered cysteines (cysteine scanning) on channel properties strongly suggest that TM6 is a key component of the anion-conducting pore, but previous cysteine-scanning studies of TM6 have produced conflicting results. Our aim was to resolve these conflicts by combining a screening strategy based on multiple, thiol-directed probes with molecular modeling of the pore. CFTR constructs were screened for reactivity toward both channel-permeant and channel-impermeant thiol-directed reagents, and patterns of reactivity in TM6 were mapped onto two new, molecular models of the CFTR pore: one based on homology modeling using Sav1866 as the template and a second derived from the first by molecular dynamics simulation. Comparison of the pattern of cysteine reactivity with model predictions suggests that nonreactive sites are those where the TM6 side chains are occluded by other TMs. Reactive sites, in contrast, are generally situated such that the respective amino acid side chains either project into the predicted pore or lie within a predicted extracellular loop. Sites where engineered cysteines react with both channel-permeant and channel-impermeant probes occupy the outermost extent of TM6 or the predicted TM5-6 loop. Sites where cysteine reactivity is limited to channel-permeant probes occupy more cytoplasmic locations. The results provide an initial validation of two, new molecular models for CFTR and suggest that molecular dynamics simulation will be a useful tool for unraveling the structural basis of anion conduction by CFTR.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 The Cys-less CFTR construct (C76S, C126S, C225S, C276S, C343S, C491S, C524S, C590L, C592L, C657S, C832S, C866S, C1344S, C1355S, C1395S, C1400S, C1410S, C1458S) was a gift from Drs. Martin Mense and David Gadsby and was used in their pGEMHE vector previously described (13).
X
ABCC7 p.Cys524Ser 19754156:42:70
status: NEW[hide] Cysteine residues in the nucleotide binding domain... Biophys J. 2002 Mar;82(3):1278-92. Harrington MA, Kopito RR
Cysteine residues in the nucleotide binding domains regulate the conductance state of CFTR channels.
Biophys J. 2002 Mar;82(3):1278-92., [PMID:11867445]
Abstract [show]
Gating of cystic fibrosis transmembrane conductance regulator (CFTR) channels requires intermolecular or interdomain interactions, but the exact nature and physiological significance of those interactions remains uncertain. Subconductance states of the channel may result from alterations in interactions among domains, and studying mutant channels enriched for a single conductance type may elucidate those interactions. Analysis of CFTR channels in inside-out patches revealed that mutation of cysteine residues in NBD1 and NBD2 affects the frequency of channel opening to the full-size versus a 3-pS subconductance. Mutating cysteines in NBD1 resulted in channels that open almost exclusively to the 3-pS subconductance, while mutations of cysteines in NBD2 decreased the frequency of subconductance openings. Wild-type channels open to both size conductances and make fast transitions between them within a single open burst. Full-size and subconductance openings of both mutant and wild-type channels are similarly activated by ATP and phosphorylation. However, the different size conductances open very differently in the presence of a nonhydrolyzable ATP analog, with subconductance openings significantly shortened by ATPgammaS, while full-size channels are locked open. In wild-type channels, reducing conditions increase the frequency and decrease the open time of subconductance channels, while oxidizing conditions decrease the frequency of subconductance openings. In contrast, in the cysteine mutants studied, altering redox potential has little effect on gating of the subconductance.
Comments [show]
None has been submitted yet.
No. Sentence Comment
72 C491S, C524S, C1344/1355S, and C491/524S mutants were inserted into a pcDNA3.1 expression vector and transiently transfected into HEK 293 cells using calcium phosphate.
X
ABCC7 p.Cys524Ser 11867445:72:7
status: NEW105 Mutation of C524 has little effect on channel gating While CFTR channels carrying the C491S mutation either alone or in combination with C524S or C1344/1355S open almost exclusively to a 3 pS subconductance, channels carry- ing only the C524S mutation exhibit conductance similar to wild-type channels.
X
ABCC7 p.Cys524Ser 11867445:105:137
status: NEWX
ABCC7 p.Cys524Ser 11867445:105:239
status: NEW106 Like the wild-type channel, nearly every patch of C524S channels gates to the full-size openings, although, like wild-type channels, subconductance openings do appear (Table 1).
X
ABCC7 p.Cys524Ser 11867445:106:50
status: NEWX
ABCC7 p.Cys524Ser 11867445:106:137
status: NEWX
ABCC7 p.Cys524Ser 11867445:106:239
status: NEW107 Moreover, gating of the C524S mutant is sensitive to redox potential in a manner almost identical to that reported in wild-type channels, with the channel openings shortened by reducing conditions and oxidizing conditions resulting in long "locked open" bursts of the channel (Harrington et al., 1999).
X
ABCC7 p.Cys524Ser 11867445:107:24
status: NEWX
ABCC7 p.Cys524Ser 11867445:107:50
status: NEW138 The patch was held at 75 mV. (B) Graph of open probability versus time for the patch shown in A. TABLE 1 Mutations of cysteine residues in NBD1 increase the proportion of patches with subconductance openings, while mutations of cysteines in NBD2 decrease the proportion of patches with subconductance openings Mutation Patches with Subconductance Patches with Full Size Total Patches Percent with Subconductance Percent with Full Size Wild-type 34 49 49 69 100 C491S 16 5 18 89 28 C491/524S 10 1 13 77 8 C524S 2 5 6 33 83 C1344/1355S 8 30 30 27 100 C-QUAD-S 19 0 30 63 0 The number of inside-out patches containing frequent full-size and/or subconductance channel openings were counted.
X
ABCC7 p.Cys524Ser 11867445:138:504
status: NEW204 Mutation of C491 in NBD1 to serine resulted in channels that opened almost exclusively to a 3-pS subconductance, while C524S mutant channels showed mostly full-size openings.
X
ABCC7 p.Cys524Ser 11867445:204:119
status: NEW206 The 3-pS subconductance of channels containing the C491S mutant alone or with other cysteine mutations was similar to the subconductance observed in recordings from patches containing wild-type CFTR channels, although with a shortened open dwell time.
X
ABCC7 p.Cys524Ser 11867445:206:119
status: NEW73 C491S, C524S, C1344/1355S, and C491/524S mutants were inserted into a pcDNA3.1 expression vector and transiently transfected into HEK 293 cells using calcium phosphate.
X
ABCC7 p.Cys524Ser 11867445:73:7
status: NEW108 Moreover, gating of the C524S mutant is sensitive to redox potential in a manner almost identical to that reported in wild-type channels, with the channel openings shortened by reducing conditions and oxidizing conditions resulting in long "locked open" bursts of the channel (Harrington et al., 1999).
X
ABCC7 p.Cys524Ser 11867445:108:24
status: NEW140 TABLE 1 Mutations of cysteine residues in NBD1 increase the proportion of patches with subconductance openings, while mutations of cysteines in NBD2 decrease the proportion of patches with subconductance openings Mutation Patches with Subconductance Patches with Full Size Total Patches Percent with Subconductance Percent with Full Size Wild-type 34 49 49 69 100 C491S 16 5 18 89 28 C491/524S 10 1 13 77 8 C524S 2 5 6 33 83 C1344/1355S 8 30 30 27 100 C-QUAD-S 19 0 30 63 0 The number of inside-out patches containing frequent full-size and/or subconductance channel openings were counted.
X
ABCC7 p.Cys524Ser 11867445:140:407
status: NEW[hide] CFTR: Ligand exchange between a permeant anion ([A... Biophys J. 2006 Sep 1;91(5):1737-48. Epub 2006 Jun 9. Serrano JR, Liu X, Borg ER, Alexander CS, Shaw CF 3rd, Dawson DC
CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore.
Biophys J. 2006 Sep 1;91(5):1737-48. Epub 2006 Jun 9., [PMID:16766608]
Abstract [show]
Previous attempts to identify residues that line the pore of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have utilized cysteine-substituted channels in conjunction with impermeant, thiol-reactive reagents like MTSET+ and MTSES-. We report here that the permeant, pseudohalide anion [Au(CN)2]- can also react with a cysteine engineered into the pore of the CFTR channel. Exposure of Xenopus oocytes expressing the T338C CFTR channel to as little as 100 nM [Au(CN)2]- produced a profound reduction in conductance that was not reversed by washing but was reversed by exposing the oocytes to a competing thiol like DTT (dithiothreitol) and 2-ME (2-mercaptoethanol). In detached, inside out patches single-channel currents were abolished by [Au(CN)2]- and activity was not restored by washing [Au(CN)2]- from the bath. Both single-channel and macroscopic currents were restored, however, by exposing [Au(CN)2]- -blocked channels to excess [CN]-. The results are consistent with the hypothesis that [Au(CN)2]- can participate in a ligand exchange reaction with the cysteine thiolate at 338 such that the mixed-ligand complex, with a charge of -1, blocks the anion conduction pathway.
Comments [show]
None has been submitted yet.
No. Sentence Comment
23 MATERIALS AND METHODS Mutagenesis and in vitro transcription The Cys-less CFTR construct (C76S, C126S, C225S, C276S, C343S, C491S, C524S, C590L, C592L, C657S, C832S, C866S, C1344S, C1355S, C1395S, C1400S, C1410S, C1458S) was a gift from Drs. Martin Mense and Submitted December 28, 2005, and accepted for publication May 19, 2006.
X
ABCC7 p.Cys524Ser 16766608:23:131
status: NEW[hide] Deletion of Phenylalanine 508 in the First Nucleot... J Biol Chem. 2015 Sep 18;290(38):22862-78. doi: 10.1074/jbc.M115.641134. Epub 2015 Jul 6. Chong PA, Farber PJ, Vernon RM, Hudson RP, Mittermaier AK, Forman-Kay JD
Deletion of Phenylalanine 508 in the First Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator Increases Conformational Exchange and Inhibits Dimerization.
J Biol Chem. 2015 Sep 18;290(38):22862-78. doi: 10.1074/jbc.M115.641134. Epub 2015 Jul 6., [PMID:26149808]
Abstract [show]
Deletion of Phe-508 (F508del) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) results in destabilization of the domain, intramolecular interactions involving the domain, and the entire channel. The destabilization caused by F508del manifests itself in defective channel processing and channel gating defects. Here, we present NMR studies of the effect of F508del and the I539T stabilizing mutation on NBD1 dynamics, with a view to understanding these changes in stability. Qualitatively, F508del NMR spectra exhibit significantly more peak broadening than WT spectra due to the enhanced intermediate time scale (millisecond to microsecond) motions in the mutant. Unexpectedly, studies of fast (nanosecond to picosecond) motions revealed that F508del NBD1 tumbles more rapidly in solution than WT NBD1. Whereas F508del tumbles at a rate nearly consistent with the monomeric state, the WT protein tumbles significantly more slowly. Paramagnetic relaxation enhancement experiments confirm that NBD1 homodimerizes in solution in the expected head-to-tail orientation. NMR spectra of WT NBD1 reveal significant concentration-dependent chemical shift perturbations consistent with NBD1 dimerization. Chemical shift analysis suggests that the more rapid tumbling of F508del is the result of an impaired ability to dimerize. Based on previously published crystal structures and NMR spectra of various NBD1 mutants, we propose that deletion of Phe-508 affects Q-loop conformational sampling in a manner that inhibits dimerization. These results provide a potential mechanism for inhibition of channel opening by F508del and support the dimer interface as a target for cystic fibrosis therapeutics.
Comments [show]
None has been submitted yet.
No. Sentence Comment
288 Of note, we were not able to express or purify NBD1 using the previously published mutations C491S, C524S, C590V, and C592V (12), probably because these mutations destabilize NBD1.
X
ABCC7 p.Cys524Ser 26149808:288:100
status: NEW