ABCC7 p.Trp356Cys

ClinVar: c.1068G>A , p.Trp356* ? , not provided
CF databases: c.1067G>C , p.Trp356Ser (CFTR1) ? ,
Predicted by SNAP2: A: D (59%), C: N (53%), D: D (66%), E: D (63%), F: D (63%), G: D (66%), H: D (75%), I: D (71%), K: D (71%), L: D (71%), M: D (66%), N: D (66%), P: D (85%), Q: D (63%), R: D (71%), S: D (59%), T: D (63%), V: D (66%), Y: D (63%),
Predicted by PROVEAN: A: N, C: N, D: N, E: N, F: N, G: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, Y: N,

[switch to compact view]
Comments [show]
Publications
[hide] Chen EY, Bartlett MC, Loo TW, Clarke DM
The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2004 Sep 17;279(38):39620-7. Epub 2004 Jul 21., 2004-09-17 [PMID:15272010]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loo TW, Bartlett MC, Wang Y, Clarke DM
The chemical chaperone CFcor-325 repairs folding defects in the transmembrane domains of CFTR-processing mutants.
Biochem J. 2006 May 1;395(3):537-42., 2006-05-01 [PMID:16417523]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Mornon JP, Lehn P, Callebaut I
Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces.
Cell Mol Life Sci. 2008 Aug;65(16):2594-612., [PMID:18597042]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loo TW, Bartlett MC, Clarke DM
The V510D suppressor mutation stabilizes DeltaF508-CFTR at the cell surface.
Biochemistry. 2010 Aug 3;49(30):6352-7., 2010-08-03 [PMID:20590134]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loo TW, Clarke DM
The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
Biochem Pharmacol. 2014 Mar 1;88(1):46-57. doi: 10.1016/j.bcp.2013.12.027. Epub 2014 Jan 9., [PMID:24412276]

Abstract [show]
Comments [show]
Sentences [show]