ABCC7 p.Val456Phe
ClinVar: |
c.1366G>T
,
p.Val456Phe
?
, not provided
c.1367T>C , p.Val456Ala D , Likely pathogenic |
CF databases: |
c.1366G>T
,
p.Val456Phe
(CFTR1)
?
, This mutation was detected in a seven year old German CF patient who it heterozygous for R1162X and pancreas sufficient. V456F destroys a recognition site for Acil which is also abolished by mutation A455E. WE have not seen V456F in further 220 German CF chromosomes.
|
Predicted by SNAP2: | A: D (91%), C: D (91%), D: D (95%), E: D (95%), F: N (53%), G: D (95%), H: D (95%), I: D (71%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: N, K: D, L: N, M: N, N: D, P: D, Q: D, R: D, S: D, T: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Missense, nonsense, and neutral mutations define j... J Biol Chem. 2003 Jul 18;278(29):26580-8. Epub 2003 May 5. Pagani F, Buratti E, Stuani C, Baralle FE
Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9.
J Biol Chem. 2003 Jul 18;278(29):26580-8. Epub 2003 May 5., 2003-07-18 [PMID:12732620]
Abstract [show]
Exonic sequence variations may induce exon inclusion or exclusion from the mature mRNA by disrupting exonic regulatory elements and/or by affecting a nuclear reading frame scanning mechanism. We have carried out a systematic study of the effect on cystic fibrosis transmembrane regulator exon 9 splicing of natural and site-directed sequence mutations. We have observed that changes in the splicing pattern were not related to the creation of premature termination codons, a fact that indicates the lack of a significant nuclear check of the reading frame in this system. In addition, the splice pattern could not be predicted by available Ser/Arg protein matrices score analysis. An extensive site-directed mutagenesis of the 3' portion of the exon has identified two juxtaposed splicing enhancer and silencer elements. The study of double mutants at these regulatory elements showed a complex regulatory activity. For example, one natural mutation (146C) enhances exon inclusion and overrides all of the downstream silencing mutations except for a C to G transversion (155G). This unusual effect is explained by the creation of a specific binding site for the inhibitory splicing factor hnRNPH. In fact, on the double mutant 146C-155G, the silencing effect is dominant. These results indicate a strict dependence between the two juxtaposed enhancer and silencer sequences and show that many point mutations in these elements cause changes in splicing efficiency by different mechanisms.
Comments [show]
None has been submitted yet.
No. Sentence Comment
84 The G118T (D443Y) and G157T (V456F) mutations did not significantly affect the splicing pattern, whereas the A146C (Q452P) caused an almost complete inclusion on the exon (96%).
X
ABCC7 p.Val456Phe 12732620:84:29
status: NEW137 Identification of Regulatory Elements of Splicing in CFTR Exon 9-Three natural missense mutations with completely different effects on splicing (Q452P (A146C), which induces exon inclusion; A455E (C155A), causing exon exclusion; and V456F (G157T), with no effect) are located within 15 nucleotides.
X
ABCC7 p.Val456Phe 12732620:137:233
status: NEW144 On the contrary, the 153C and the 157T (V456F) variants did not significantly affect the splicing pattern.
X
ABCC7 p.Val456Phe 12732620:144:40
status: NEW198 The natural mutations Q456P, A455E, and V456F correspond to A146C, C155A and G157T, respectively.
X
ABCC7 p.Val456Phe 12732620:198:40
status: NEW221 WT sequence position AA change Nucleotide mutants Exon 9ϩ SR protein matrices above thresholds Disruption of preexisting sites New sites created by the mutations SC35 SR40 SF2 SR55 % WT 65 A 15 C 65 T 16 ⌬ 96 T 18 G 95 3.38 (13) G 19 A 52 A 20 G 80 C 31 Q414X T 50 A 43 G 62 SR40 0.28 (41) A 44 N414S G 59 46t49t 67 SR40 1.43 (41) G 61 G424S A 31 C 58 66g67a69g 68 SR40-1.01 (66) 3.21 (63) 2.24 (64) C 72 G 18 2.20 (67) A 63 2.01 (69) G 118 D443Y T 68 A 65 120g122a123g 96 2.24 (118) T 122 I444S G 40 A 144 G 55 T 40 C 145 G 85 A 87 A 146 G 92 3.02 (146) 2.66 (141) T 94 3.23 (143) Q452P C 96 3.46 (143) ⌬ 97 2.81 (142) 3.03 (141) G 147 T 97 C 98 2.70 (142) 3.00 (144) 2.53 (143) T 148 G 26 2.99 (142) 4.05 (143) C 90 2.49 (143) 2.47 (145) A 93 3.46 (145) T 149 C 82 2.99 (144) 3.53 (145) G 150 A 50 3.38 (148) C 62 T 151 A 65 C 67 3.00 (146) 3.15 (148) G 153 C 65 T 42 2.76 (153) G 154 T 18 C 20 C 155 A455E A 15 1.98 (152) G 3 T 5 G 156 T 10 3.59 (153) C 40 3.82 (153) G 157 V456F T 65 G 164ϩ ins 14 regulatory sequences derived from SR-specific score matrices, and the creation of novel enhancer and silencer controlling elements.
X
ABCC7 p.Val456Phe 12732620:221:997
status: NEW[hide] Nucleotide binding domains of human CFTR: a struct... Cell Mol Life Sci. 2005 Sep;62(18):2112-23. Eudes R, Lehn P, Ferec C, Mornon JP, Callebaut I
Nucleotide binding domains of human CFTR: a structural classification of critical residues and disease-causing mutations.
Cell Mol Life Sci. 2005 Sep;62(18):2112-23., [PMID:16132229]
Abstract [show]
Defective function of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) causes CF, the most frequent lethal inherited disease among the Caucasian population. The structure of this chloride ion channel includes two nucleotide-binding domains (NBDs), whose ATPase activity controls channel gating. Recently, the experimental structures of mouse and human CFTR NBD1 and our model of the human CFTR NBD1/NBD2 heterodimer have provided new insights into specific structural features of the CFTR NBD dimer. In the present work, we provide a structural classification of CF-causing mutations which may complement the existing functional classification. Our analysis also identified amino acid residues which may play a critical role in interdomain interaction and are located at the NBD1-NBD2 interface or on the surface of the dimer. In particular, a cluster of aromatic amino acids, which includes F508 and straddles the two NBDs, might be directly involved in the interaction of the NBD1/NBD2 heterodimer with the channel-forming membrane-spanning domains.
Comments [show]
None has been submitted yet.
No. Sentence Comment
108 Examples are V456F [33] and V520F [34] (labeled C and K, respectively, in fig. 2) which involve residues buried in the interior of the NBD1 subdomain.
X
ABCC7 p.Val456Phe 16132229:108:13
status: NEW134 Accordingly, the missense mutation V456F (labeled C in fig. 2), which involves a topohydrophobic position buried in NBD1 (see above), was also reported in a patient suffering from a mild (pancreas-sufficient) form of CF [33].
X
ABCC7 p.Val456Phe 16132229:134:35
status: NEW[hide] Haplotype analysis of 94 cystic fibrosis mutations... Hum Mutat. 1996;8(2):149-59. Morral N, Dork T, Llevadot R, Dziadek V, Mercier B, Ferec C, Costes B, Girodon E, Zielenski J, Tsui LC, Tummler B, Estivill X
Haplotype analysis of 94 cystic fibrosis mutations with seven polymorphic CFTR DNA markers.
Hum Mutat. 1996;8(2):149-59., [PMID:8844213]
Abstract [show]
We have analyzed 416 normal and 467 chromosomes carrying 94 different cystic fibrosis (CF) mutations with polymorphic genetic markers J44, IVS6aGATT, IVS8CA, T854, IVS17BTA, IVS17BCA, and TUB20. The number of mutations found with each haplotype is proportional to its frequency among normal chromosomes, suggesting that there is no preferential haplotype in which mutations arise and thus excluding possible selection for specific haplotypes. While many common mutations in the worldwide CF population showed absence of haplotype variation, indicating their recent origins, some mutations were associated with more than one haplotype. The most common CF mutations, delta F508, G542X, and N1303K, showed the highest number of slippage events at microsatellites, suggesting that they are the most ancient CF mutations. Recurrence was probably the case for 9 CF mutations (R117H, H199Y, R347YH, R347P, L558S, 2184insA, 3272-26A-->G, R1162X, and 3849 + 10kbC-->T). This analysis of 94 CF mutations should facilitate mutation screening and provides useful data for studies on population genetics of CF.
Comments [show]
None has been submitted yet.
No. Sentence Comment
105 CFTR Haplotypes for Diallelic and Multiallelic DNA Markers for 94 CF Mutations" J44-GATT- 8CA-17BTA- No. of T854-TUB20 17BCA Mutation chromosomes % Normal Laboratory Reference 2-7-1-2 17-47-13 (55.4%) 17-46-13 17-45-13 17-34-13 17-32-13 17-31-14 17-31-13 17-29-14 17-28-13 16-48-13 16-46-14 16-46-13 16-45-13 16-44-13 16-35-13 16-33-13 16-32-13 16-31-14 16-31-13 16-30-13 16-29-13 16-26-13 16-25-13 16-24-13 14-31-13 1-7-2-1 17-7-17 (16.8%) R334W R334W 3860ins31 G1244E R1162X R1162X R1162X G91R MllOlK R347P R334W R117C E92K 3849+lOkbC+T 3293delA 1811+1.6kb A-tG 1811+1.6kb A-tG 2184insA P205S 3659delC G673X 11005R I336K W58S R347P W846X 405+1-A G178R 3905insT R1162X R347H 3100insA E60X 1078delT 4005+1-A K710X 1677delTA H199Y 3601-2AjG 3850-3T+G 3272-26A-tG 3850-1-A 1812-1-A R117H L1059X S492F Y1092X Y569H 3732delA C866Y 711+1G+T 711+1-T G85E 1949del84 2789+5-A H1085R W1282X R1066C 2043delG V456F 2 1 1 1 2 1 6 2 2 1 2 1 1 2 1 1 4 1 1 1 3 2 1 1 1 1 1 1 2 7 1 1 1 1 2 1 1 3 19 3 3 1 1 2 1 1 5 1 1 1 1 3 6 3 5 1 13 2 1 1 - 0.48 0.48 - - - 0.24 - - - 2.65 2.40 1.93 2.65 1.68 2.65 0.72 13.94 13.46 1.93 - 0.72 0.24 3.37 - b b fP fP fP t b,fb.fP h fb t h t h h fP fP b.h b h h b h h h h h fb fb,fP.t fP fP fP9t fP b t fPh b h fb b.fb,h fb*fP b,fP h h t h fb fb,fp,h.t fP fP fb t b.fP,t b,fb,h,t b f b h h fb b,fb.fP,h fP h h Gasparini et al. (1991b) Chilldn et al. (1993a) Devoto et al. (1991) Gasparini et al. (1991b) Dork et al. (1993a) Guillermit et al. (1993) Zielenski et al. (1993) Dean et al. (1990) Dork et al. (1994a) Nunes et al. (1993) Highsmith et al. (1994) Ghanem et al. (1994) Chilldn et al. (1995) Dork et al. (1994a) Dork et al. (1993a) Chilldn et al. (1993b) Kerem et al. (1990) Dork et al. (1994a) Dork et al. (1994a) Cuppenset al. (1993) Fanen et al. (1992) Maggio et al. (personal communication) Audrezet et al. (1993) Vidaud et al. (1990) Dork et al. (1993b) Zielenski et al. (1991a) Chilldn et al. (1994b) Malik et al. (personal communication) Cremonesi et at.
X
ABCC7 p.Val456Phe 8844213:105:898
status: NEW[hide] Increased incidence of cystic fibrosis gene mutati... Hum Mol Genet. 1995 Apr;4(4):635-9. Pignatti PF, Bombieri C, Marigo C, Benetazzo M, Luisetti M
Increased incidence of cystic fibrosis gene mutations in adults with disseminated bronchiectasis.
Hum Mol Genet. 1995 Apr;4(4):635-9., [PMID:7543317]
Abstract [show]
In order to identify a possible hereditary predisposition to the development of obstructive pulmonary disease of unknown origin, we have looked for the presence of Cystic Fibrosis Transmembrane Regulator (CFTR) gene mutations in unrelated patients with no signs of Cystic Fibrosis (CF). We screened for 70 common mutations, and also for rare mutations by denaturing gradient gel electrophoresis analysis. In this search, different CFTR gene mutations (R75Q, delta F508, R1066C, M1137V and 3667ins4) were found in five out of 16 adult Italian patients with disseminated bronchiectasis, a significant increase over the expected frequency of carriers. Moreover, three rare CFTR gene DNA polymorphisms (G576A, R668C, and 2736 A-->G), not deemed to be the cause of CF, were found in two patients, one of which was a compound heterozygote with R1066C. These results indicate that CFTR gene mutations, and perhaps also DNA polymorphisms, may be involved in the etiopathogenesis of at least some cases of bronchiectasis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
31 List of CFTR gene mutations and DNA polymorphisms screened Mutations R75Q/X/L, G85E, 394deITT 457TAT->G, R117H 621 + 1G->T 711 + 5G->A L206W 875 + 40 A->G 936 del TA 1001 + 11C->T R334W, R347 P/H/L, 1154insTC A455E, V456F DF5O8 1717-IG->A, 1717-8G->A G542X, G551D, Q552X, R553X P574H 1898 + 3A->G 2183 AA->G, 2184delA, R709X D836Y, 2694 T/G 2752-22 A/G 2789 + 5 G->A, 2790-2 A-»G Q890X 3041-71 G/C 3132delTG 3271 + 18 C-»T, 3272-26 A->G H1054D, G1061R, R1066C/H, A1067T, H1085R, Y1092X, 3320 ins5 D1152H R1162X, 3667ins4, 3737delA, 11234V 3849 + 10 kb C-»T, 3850-1 G-»A SI25IN, S1255P, 3905insT, 3898insC, D127ON, W1282X, R1283M, 4002 A/G 4005 + 1 G-»A N1303 K/H, 4029 A/G D1377H Q1411 X 4404 C/T, 4521 G/A Location e 3 e 4 i 4 i 5 e 6a i 6a e 6b i 6b e 7 e 9 e 10 i 10 e 11 e 12 i 12 e 13 e 14a i 14a i 14b e 15 i 15 e 17a i 17a e 17b e 18 e 19 i 19 e 20 i 20 e2l e 22 e 23 e24 Listing is in order of location along the CFTR gene, e = exon; i = intron.
X
ABCC7 p.Val456Phe 7543317:31:216
status: NEW[hide] Detection of more than 50 different CFTR mutations... Hum Genet. 1994 Nov;94(5):533-42. Dork T, Mekus F, Schmidt K, Bosshammer J, Fislage R, Heuer T, Dziadek V, Neumann T, Kalin N, Wulbrand U, et al.
Detection of more than 50 different CFTR mutations in a large group of German cystic fibrosis patients.
Hum Genet. 1994 Nov;94(5):533-42., [PMID:7525450]
Abstract [show]
We have conducted a comprehensive study of the molecular basis of cystic fibrosis (CF) in 350 German CF patients. A screening approach based on single-strand conformation analysis and direct sequencing of genomic polymerase chain reaction products has allowed us to detect the molecular defects on 95.4% of the CF chromosomes within the coding region and splice sites of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The spectrum of sequence changes comprises 54 different mutations, including 17 missense mutations, 14 nonsense mutations, 11 frameshift mutations, 10 splice site variants and two amino acid deletions. Eleven of these mutations have not previously been described. Our results reflect the marked mutational heterogeneity of CF in a large sample of patients from a non-isolated population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
77 Table 1 Frequency distribution and haplotypes of CFTR mutations in 700 German CF chromosomes Mutation~ Nucleotide changesb Locationc Frequencyd Haplotype~ Referencef Q39x C--~T at 247 Exon 2 1 (0.1%) D3 Cutting et al. (1992) E60X G-+T at 310 Exon 3 1 (0.1%) A2 Malone et al. (*) R75X C--+T at 355 Exon 3 1 (0.1%) C2 This study 405+1 G---~A G-+A at 405+1 Intron 3 1 (0.1%) C2 D6rk et al. (1993c) E92X G--~T at 406 Exon 4 2 (0.3%) B2 Will et al. (1994) R117C C---~Tat 481 Exon 4 1 (0.1%) C2 This study R117H G--+A at 482 Exon 4 2 (0.3%) B6 Dean et al. (1990) 621+1 G--+T G--+T at 621+1 Intron 4 1 (0.1%) B1 Zielenski et al. (1991b) H199Y C--+T at 727 Exon 6a 1 (0.1%) A2 This study (*) 1078delT Deletion of T at 1078 Exon 7 4 (0.6%) C2 Claustres et al. (1992) R334W C-~T at 1132 Exon 7 2 (0.3%) BI Gasparini et al. (1991) 1336K T-->A at 1139 Exon 7 3 (0.4%) A2 Cuppens et al. (1993) R347P G--+C at 1172 Exon 7 11 (1.6%) A2, C2 Dean et al. (1990) 1342-2 A--+C A--+C at 1342-2 Intron 8 3 (0.4%) A4 D/3rk et al. (1993b) Q414X C--+T at 1372 Exon 9 1 (0.1%) D3 D6rk et al. (1994a) A455E C-+A at 1496 Exon 9 1 (0.1%) BI Kerem et al. (1990) V456F G--~T at 1498 Exon 9 1 (0.1%) B3 D6rk et al. (1994a) A1507 Deletion of 3 bp between 1648-1653 Exon 10 1 (0.1%) D5 Kerem et al. (1990) AF508 Deletion of 3 bp between 1652-1655 Exon 10 504 (72.0%) B1, DI, B7 Kerem et al. (1989) 1717-1 G--+A G--+A at 1717-1 lntron 10 6 (0.9%) B3 Kerem et al. (1990) G542X G--+T at 1756 Exon 11 10 (1.4%) B1 Kerem et al. (1990) G551D G--+A at 1784 Exon 11 7 (l.0%) B3 Cutting et al. (1990) Q552X C-+T at 1786 Exon 11 1 (0.1%) A4 Devoto et al. (1991) R553X C--+T at 1789 Exon 11 16 (2.3%) A4, B4, D3 Cutting et al. (1990) L558S T--+C at 1805 Exon 11 1 (0.1%) C2 Maggio et al. (*) 1811+I.6kBA-+G A--+Gat 1811+l.6kB lntron 11 1 (0.1%) A2 Chillonetal.
X
ABCC7 p.Val456Phe 7525450:77:1132
status: NEW[hide] Exon 9 of the CFTR gene: splice site haplotypes an... Hum Genet. 1994 Jan;93(1):67-73. Dork T, Fislage R, Neumann T, Wulf B, Tummler B
Exon 9 of the CFTR gene: splice site haplotypes and cystic fibrosis mutations.
Hum Genet. 1994 Jan;93(1):67-73., [PMID:7505767]
Abstract [show]
The alternatively spliced exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene codes for the initial part of the amino-terminal nucleotide-binding fold of CFTR. A unique feature of the acceptor splice site preceding this exon is a variable length polymorphism within the polypyrimidine tract influencing the extent of exon 9 skipping in CFTR mRNA. We investigated this repeat for its relationship to CFTR mutations and intragenic markers on 200 chromosomes from German patients with cystic fibrosis (CF). Four frequent length variations were strongly associated with the four predominant haplotypes previously defined by intragenic marker dimorphisms. One of these alleles displayed absolute linkage disequilibrium to the major CF mutation delta F508. Other frequent CFTR mutations were linked to one particular splice site haplotype indicating that differential exon 9 skipping contributes little to the clinical heterogeneity among CF patients with an identical mutation. We also identified a novel missense mutation (V456F) and a novel nonsense mutation (Q414X) within the coding region of exon 9. The missense mutation V456F adjacent to Walker motif A was present in a pancreas-sufficient CF patient. In contrast, the pancreas-insufficient Q414X/delta F508 compound heterozygote suffered from a severe form of the disease, indicating that alternative splicing of exon 9 does not overcome the deleterious effect of a stop codon with this exon.
Comments [show]
None has been submitted yet.
No. Sentence Comment
7 We also identified a novel missense mutation (V456F) and a novel nonsense mutation (Q414X) within the coding region of exon 9.
X
ABCC7 p.Val456Phe 7505767:7:46
status: NEW8 The missense mutation V456F adjacent to Walker motif A was present in a pancreas-sufficient CF patient.
X
ABCC7 p.Val456Phe 7505767:8:22
status: NEW61 Association of (TG),Tm alleles with CFTR mutations (TG),Tm CFTR mutationsa (TG)llT7 E60X, E92X, R117C, 1078delT, R347P, R553X, 2184delA, 2184insA, I1005R, 3272-26A--~G, L1059X, Y1092X, R1162X, 3659delC, 3850-3T-oG, S1251N Q39X, R117H, Q414X, V456F, AI507, 1717-1G--~A, G551D, 2043delG, 2183AA---~G, 2184insA, 2789 + 5 G---~A,3272-26A---~G, R1066C, L1077P, 3849 + l0 kB C---~T,4374 + 1 G---~T 621 + 1 G---~T,R334W, A455E, AF508, G542X, 2143delT, 3849 + 10 kB C---~T,NI303K 405 + 1 G----~A,1342-2 A---~C,R553X (TG)IoT7 (TG)10T9 (TG)12T7 a References are compiled in Tsui (1992), except for 2143delT (Dtrk et al. 1992b), 3850-3 T---~G,4374 + 1 G---~T,1342-2 A---~C (Dtrk et al. 1993a, b), Q414X, V456F (this work), 405 + 1 G---~A, E92X, R117C, 2184delA, 2184insA, I1005R, L1059X (T.
X
ABCC7 p.Val456Phe 7505767:61:242
status: NEWX
ABCC7 p.Val456Phe 7505767:61:693
status: NEW71 Direct sequencing of the V456F mutation. Left, Control; right, patient heterozygous for V456F above.
X
ABCC7 p.Val456Phe 7505767:71:25
status: NEWX
ABCC7 p.Val456Phe 7505767:71:88
status: NEW75 The missense mutations A455E and V456F are both located in front of the conserved Walker motif A (Riordan et al. 1989; Walker et al. 1982).
X
ABCC7 p.Val456Phe 7505767:75:33
status: NEW78 The other missense mutation, V456F, represents a novel G--~T transversion at nucleotide position 1498, changing the valine codon 456 to a phenylalanine codon (Fig. 4).
X
ABCC7 p.Val456Phe 7505767:78:29
status: NEW81 The mutations A455E and V456F both destroy the same recognition site for the restriction enzyme AciI.
X
ABCC7 p.Val456Phe 7505767:81:24
status: NEW111 The apparent abundance of exon 9 skipping in healthy individuals needs to be taken into consideration when a disease-causing role is attributed to mutations within the coding region of exon 9, such as the Q414X and V456F mutations identified in this study.
X
ABCC7 p.Val456Phe 7505767:111:215
status: NEW116 The novel mutation V456F adds to these mutations that may affect nucleotide binding.
X
ABCC7 p.Val456Phe 7505767:116:19
status: NEW120 Thus, the nature and location of the V456F substitution seem to be in agreement with the mild disease observed in our index patient who is compound heterozygous for the pancreas-insufficient R1162X mutation (Gasparini et al. 1991).
X
ABCC7 p.Val456Phe 7505767:120:37
status: NEW121 In principle, the V456F change and the other identified missense mutations in exon 9 can be by-passed through alternative splicing.
X
ABCC7 p.Val456Phe 7505767:121:18
status: NEW135 Michael J. Lentze for providing the DNA sample of the V456F heterozygote.
X
ABCC7 p.Val456Phe 7505767:135:54
status: NEW