ABCC7 p.Gln552His
ClinVar: |
c.1654C>T
,
p.Gln552*
D
, Pathogenic
|
CF databases: |
c.1654C>T
,
p.Gln552*
D
, CF-causing
c.1654C>A , p.Gln552Lys (CFTR1) D , The mutation Q552K was detected by DGGE and direct sequencing in a patient from Brazil (Afro-American origin), he is homozygous for this mutation, with PI and mild lung involvement. |
Predicted by SNAP2: | A: D (75%), C: D (71%), D: D (85%), E: D (71%), F: D (85%), G: D (80%), H: D (75%), I: D (85%), K: D (85%), L: D (85%), M: D (75%), N: D (75%), P: D (91%), R: D (85%), S: D (75%), T: D (80%), V: D (75%), W: D (85%), Y: D (80%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Insight in eukaryotic ABC transporter function by ... FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19. Frelet A, Klein M
Insight in eukaryotic ABC transporter function by mutation analysis.
FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19., 2006-02-13 [PMID:16442101]
Abstract [show]
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
212 Q552H (NBD1) slowed CFTR channel opening without affecting closing, whereas the converse mutation, H1350Q (NBD2) accelerated channel closing without influencing the channel opening rate [68].
X
ABCC7 p.Gln552His 16442101:212:0
status: NEW[hide] On the mechanism of MgATP-dependent gating of CFTR... J Gen Physiol. 2003 Jan;121(1):17-36. Vergani P, Nairn AC, Gadsby DC
On the mechanism of MgATP-dependent gating of CFTR Cl- channels.
J Gen Physiol. 2003 Jan;121(1):17-36., [PMID:12508051]
Abstract [show]
CFTR, the product of the gene mutated in cystic fibrosis, is an ATPase that functions as a Cl(-) channel in which bursts of openings separate relatively long interburst closed times (tauib). Channel gating is controlled by phosphorylation and MgATP, but the underlying molecular mechanisms remain controversial. To investigate them, we expressed CFTR channels in Xenopus oocytes and examined, in excised patches, how gating kinetics of phosphorylated channels were affected by changes in [MgATP], by alterations in the chemical structure of the activating nucleotide, and by mutations expected to impair nucleotide hydrolysis and/or diminish nucleotide binding affinity. The rate of opening to a burst (1/tauib) was a saturable function of [MgATP], but apparent affinity was reduced by mutations in either of CFTR's nucleotide binding domains (NBDs): K464A in NBD1, and K1250A or D1370N in NBD2. Burst duration of neither wild-type nor mutant channels was much influenced by [MgATP]. Poorly hydrolyzable nucleotide analogs, MgAMPPNP, MgAMPPCP, and MgATPgammaS, could open CFTR channels, but only to a maximal rate of opening approximately 20-fold lower than attained by MgATP acting on the same channels. NBD2 catalytic site mutations K1250A, D1370N, and E1371S were found to prolong open bursts. Corresponding NBD1 mutations did not affect timing of burst termination in normal, hydrolytic conditions. However, when hydrolysis at NBD2 was impaired, the NBD1 mutation K464A shortened the prolonged open bursts. In light of recent biochemical and structural data, the results suggest that: nucleotide binding to both NBDs precedes channel opening; at saturating nucleotide concentrations the rate of opening to a burst is influenced by the structure of the phosphate chain of the activating nucleotide; normal, rapid exit from bursts occurs after hydrolysis of the nucleotide at NBD2, without requiring a further nucleotide binding step; if hydrolysis at NBD2 is prevented, exit from bursts occurs through a slower pathway, the rate of which is modulated by the structure of the NBD1 catalytic site and its bound nucleotide. Based on these and other results, we propose a mechanism linking hydrolytic and gating cycles via ATP-driven dimerization of CFTR's NBDs.
Comments [show]
None has been submitted yet.
No. Sentence Comment
34 Thus, the K1250A mutation dramatically prolonged burst duration, suggesting that hydrolysis at NBD2 might be coupled to burst termination (Carson et al., 1995; Gunderson and Kopito, 1995), whereas the NBD1 mutations K464A, Q552A, and Q552H somewhat slowed channel opening to a burst, suggesting that NBD1 might be a site of ATP interactions governing opening (Carson et al., 1995; Carson and Welsh 1995).
X
ABCC7 p.Gln552His 12508051:34:234
status: NEW[hide] Control of CFTR channel gating by phosphorylation ... Physiol Rev. 1999 Jan;79(1 Suppl):S77-S107. Gadsby DC, Nairn AC
Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis.
Physiol Rev. 1999 Jan;79(1 Suppl):S77-S107., [PMID:9922377]
Abstract [show]
Control of CTFR Channel Gating by Phosphorylation and Nucleotide Hydrolysis. Physiol. Rev. 79, Suppl.: S77-S107, 1999. - The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is the protein product of the gene defective in cystic fibrosis, the most common lethal genetic disease among Caucasians. Unlike any other known ion channel, CFTR belongs to the ATP-binding cassette superfamily of transporters and, like all other family members, CFTR includes two cytoplasmic nucleotide-binding domains (NBDs), both of which bind and hydrolyze ATP. It appears that in a single open-close gating cycle, an individual CFTR channel hydrolyzes one ATP molecule at the NH2-terminal NBD to open the channel, and then binds and hydrolyzes a second ATP molecule at the COOH-terminal NBD to close the channel. This complex coordinated behavior of the two NBDs is orchestrated by multiple protein kinase A-dependent phosphorylation events, at least some of which occur within the third large cytoplasmic domain, called the regulatory domain. Two or more kinds of protein phosphatases selectively dephosphorylate distinct sites. Under appropriately controlled conditions of progressive phosphorylation or dephosphorylation, three functionally different phosphoforms of a single CFTR channel can be distinguished on the basis of channel opening and closing kinetics. Recording single CFTR channel currents affords an unprecedented opportunity to reproducibly examine, and manipulate, individual ATP hydrolysis cycles in a single molecule, in its natural environment, in real time.
Comments [show]
None has been submitted yet.
No. Sentence Comment
465 Functional analyses of CFTR channels bearing point mutations these results from G proteins, introduction of the mutation Q552H into NBD1 of CFTR slowed CFTR channelin these three key regions have begun to clarify the roles of the two NBDs in channel gating.
X
ABCC7 p.Gln552His 9922377:465:121
status: NEW[hide] Structural and functional similarities between the... Biophys J. 1995 Dec;69(6):2443-8. Carson MR, Welsh MJ
Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins.
Biophys J. 1995 Dec;69(6):2443-8., [PMID:8599650]
Abstract [show]
The opening and closing of the CFTR Cl- channel are regulated by ATP hydrolysis at its two nucleotide binding domains (NBDs). However, the mechanism and functional significance of ATP hydrolysis are unknown. Sequence similarity between the NBDs of CFTR and GTP-binding proteins suggested the NBDs might have a structure and perhaps a function like that of GTP-binding proteins. Based on this similarity, we predicted that the terminal residue of the LSGGQ motif in the NBDs of CFTR corresponds to a highly conserved glutamine residue in GTP-binding proteins that directly catalyzes the GTPase reaction. Mutations of this residue in NBD1 or NBD2, which were predicted to increase or decrease the rate of hydrolysis, altered the duration of channel closed and open times in a specific manner without altering ion conduction properties or ADP-dependent inhibition. These results suggest that the NBDs of CFTR, and consequently other ABC transporters, may have a structure and a function analogous to those of GTP-binding proteins. We conclude that the rates of ATP hydrolysis at NBD1 and at NBD2 determine the duration of the two states of the channel, closed and open, much as the rate of GTP hydrolysis by GTP-binding proteins determines the duration of their active state.
Comments [show]
None has been submitted yet.
No. Sentence Comment
27 To test these hypotheses we used the excised inside-out patch-clamp technique to study CFTR variants containing the Q552A, Q552H, H1350Q, and H1350A mutations.
X
ABCC7 p.Gln552His 8599650:27:123
status: NEW72 That is, Q552A and Q552H decreased the rate at A. I I 40 80 120 V (mV) I (pA) 0.50- P0 FIGURE 2 Effect of Q552 and H1350 mutations on CFTR Cl- chan- nels.
X
ABCC7 p.Gln552His 8599650:72:19
status: NEW77 Open circles, wild-type; open triangles, Q552A; open squares, Q552H; filled circles, H1350A; filled triangles, H1350Q.
X
ABCC7 p.Gln552His 8599650:77:62
status: NEW