ABCC7 p.Phe311Leu
ClinVar: |
c.933C>G
,
p.Phe311Leu
D
, Pathogenic
|
CF databases: |
c.933C>G
,
p.Phe311Leu
(CFTR1)
?
, This mutation was observe on two CF chromosomes of French origin by DGGE and DNA sequencing. The affected children are PI. One is G551D/F311L and the other is [delta]F508/F311L. We think it is probably a disease causing mutation because it was never observed on more than 200 normal CF chromosomes screened in that exon, and for one of these children no other nucleotide change was observed through the 27 exons of the gene we have analyzed.
|
Predicted by SNAP2: | A: D (91%), C: D (85%), D: D (95%), E: D (95%), G: D (95%), H: D (95%), I: D (91%), K: D (95%), L: D (53%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: D (91%), W: D (95%), Y: D (91%), |
Predicted by PROVEAN: | A: N, C: D, D: D, E: D, G: D, H: D, I: N, K: D, L: N, M: N, N: N, P: D, Q: D, R: D, S: N, T: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Spatial and temporal distribution of cystic fibros... Hum Genet. 2002 Sep;111(3):247-54. Epub 2002 Aug 1. Scotet V, Gillet D, Dugueperoux I, Audrezet MP, Bellis G, Garnier B, Roussey M, Rault G, Parent P, De Braekeleer M, Ferec C
Spatial and temporal distribution of cystic fibrosis and of its mutations in Brittany, France: a retrospective study from 1960.
Hum Genet. 2002 Sep;111(3):247-54. Epub 2002 Aug 1., [PMID:12215837]
Abstract [show]
Cystic fibrosis (CF) is the most common severe inherited disorder that affects children in Caucasian populations. The aim of this study was to define the spatial and temporal distribution of CF and its mutations in Brittany (western France) where the frequency of the disease is high. We retrospectively registered all CF patients born in Brittany since 1960 by cross-checking various data sources (e.g. medical care centres, genetics laboratories, hospital archives). Councils were contacted so that the place of residence of patients at birth could be determined. Moreover, the spectrum of CF transmembrane conductance regulator (CFTR) mutations and their spatial distribution across Brittany were determined. A total of 520 patients was registered in this study. The incidence of CF was assessed according to administrative (department, district) and diocesan divisions of Brittany and its evolution analysed over four decades. The incidence of CF was 1/2630, with a west/east gradient that was confirmed over time (Finistere: 1/2071 vs Ille-et-Vilaine: 1/3286). At present, the incidence of CF is decreasing, mainly as a result of prenatal diagnosis. An excellent mutation detection rate of 99.7% was obtained. Western Brittany presented a specific spectrum of mutations: 1078delT (9.4% of mutated alleles in the diocese of Cornouaille), G551D (7.7% in the diocese of Leon), 4005+1G-->A (2.9% in Cornouaille) and W846X (1.5% in western Brittany). On the other hand, the eastern region showed a spectrum more similar to the overall picture in France as a whole. This study enabled a precise measurement of the incidence of CF in Brittany to be obtained. The high frequency of the CFTR mutated alleles may result from founder effects and genetic drifts. Moreover, the study brings together the regional specificities of the CFTR gene and highlights disparities that exist in this part of France, both in incidence and in mutation distribution. These are attributable to different degrees of isolation and of population movements between the eastern and western parts of the region. Given that this is the first time that such a detailed study of the CFTR gene has been performed on a large population, this heightened knowledge of the epidemiology of CF in Brittany should provide a basis for the improvement of diagnostic strategies and refinement of genetic counselling.
Comments [show]
None has been submitted yet.
No. Sentence Comment
118 His genotype was ∆F508/∆F508 Mutation Exon Basse-Bretagne Haute-Bretagne Brittanya ∆F508 10 446 75.6% 224 73.7% 672 75.0% 1078delT 7 31 5.3% 3 1.0% 34 3.8% G551D 11 21 3.6% 12 3.9% 33 3.7% N1303K 21 3 0.5% 9 3.0% 12 1.3% W846X 14a 9 1.5% 1 0.3% 10 1.1% 2789+5G→A 14b 3 0.5% 6 2.0% 9 1.0% 1717-1G→A 11 5 0.8% 3 1.0% 8 0.9% Y1092X 17b 1 0.2% 6 2.0% 7 0.8% 4005+1G→A 20 6 1.0% 1 0.3% 7 0.8% E60X 3 3 0.5% 3 1.0% 6 0.7% 621+1G→T 4 3 0.5% 3 1.0% 6 0.7% R347H 7 6 1.0% 0 0.0% 6 0.7% S492F 10 2 0.3% 3 1.0% 5 0.6% G542X 11 4 0.7% 1 0.3% 5 0.6% 3272-26A→G 17b 2 0.3% 3 1.0% 5 0.6% R117H 4 3 0.5% 1 0.3% 4 0.4% G91R 3 3 0.5% 0 0.0% 3 0.3% ∆I507 10 1 0.2% 2 0.7% 3 0.3% R553X 11 3 0.5% 0 0.0% 3 0.3% W1282X 20 2 0.3% 1 0.3% 3 0.3% A72D 3 0 0.0% 2 0.7% 2 0.2% G85E 3 0 0.0% 2 0.7% 2 0.2% F311L 7 0 0.0% 2 0.7% 2 0.2% 1221delCT 7 2 0.3% 0 0.0% 2 0.2% R560K 11 0 0.0% 2 0.7% 2 0.2% 2622+1G→A 13 2 0.3% 0 0.0% 2 0.2% S945L 15 0 0.0% 2 0.7% 2 0.2% I1234V 19 2 0.3% 0 0.0% 2 0.2% G1249R 20 2 0.3% 0 0.0% 2 0.2% 3905insT 20 2 0.3% 0 0.0% 2 0.2% Unidentified - 3 0.5% 0 0.0% 3 0.3% Total - 590 65.7% 304 34.3% 896 100% IVS17bTA, IVS17bCA) of Irish, Scottish, English, Breton and Czech subjects who were carriers of this mutation, and showed that all these alleles carried a unique haplotype (16-7-17), testifying to the Celtic origin of this mutation (Cashman et al. 1995).
X
ABCC7 p.Phe311Leu 12215837:118:840
status: NEW[hide] Comparison of the CFTR mutation spectrum in three ... Hum Mutat. 2003 Jul;22(1):105. Scotet V, Barton DE, Watson JB, Audrezet MP, McDevitt T, McQuaid S, Shortt C, De Braekeleer M, Ferec C, Le Marechal C
Comparison of the CFTR mutation spectrum in three cohorts of patients of Celtic origin from Brittany (France) and Ireland.
Hum Mutat. 2003 Jul;22(1):105., [PMID:12815607]
Abstract [show]
This study aims to compare the spectrum of the mutations identified in the gene responsible for cystic fibrosis in three cohorts of patients of Celtic origin from Brittany and Ireland. It included 389 patients from Brittany, 631 from Dublin and 139 from Cork. The CFTR gene analysis relied on the detection of the most common mutations, followed by a complete gene scanning using DGGE or D-HPLC. High mutation detection rates were obtained in each cohort: 99.6%, 96.8%, and 96.0% respectively. A high frequency of the c.1652_1655 del3 mutation (F508del: 74.8% to 81.3%) and of the "Celtic" mutation (c.1784G>A (G551D): 3.7% to 9.7%) was observed in each population. Apart from this, the mutation spectrums differed. In Brittany, the most common abnormalities were: c.1078delT (3.6%), c.4041C>G (N1303K: 1.4%), c.2670G>A (W846X(2): 1.0%) and c.1717-1G>A (1.0%), whereas in the cohort of Dublin, the main mutations were: c.482G>A (R117H: 3.0%), c.1811G>C (R560T: 2.4%) and c.621+1G>T (1.7%). Finally, in the Cork area, only the c.482G>A mutation (R117H) reached a frequency of 1%. Two previously-unreported mutations were identified in the Dublin cohort: c.2623-2A>G and c.3446T>G (M1105R). This collaborative study highlights the similarities of the CFTR alleles in the Breton and Irish populations, but also the disparities that exist between these populations, despite their common origin. Each population has its own history, with its mixture of founder effects and genetic drifts, which are at the origin of the current mutation distribution. The molecular study of the CFTR gene provides new tools for retracing European populations' histories.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 Spectrum of the CFTR Mutations Identified in the Cohorts from Brittany, Dublin Centre, and Cork Area Nucleotide Amino acid change * change Exon Number Frequency Number Frequency Number Frequency 211delG 2 1 0.1% 310G>T E60X 3 5 0.6% 4 0.3% 347C>A A72D 3 1 0.1% 368G>A W79X 3 1 0.1% 386G>A G85E 3 2 0.3% 3 0.2% 403G>A G91R 3 2 0.3% 482G>A R117H 4 4 0.5% 38 3.0% 4 1.4% 498T>A Y122X 4 1 0.1% 574delA 4 1 0.1% 577G>A G149R 4 1 0.1% 621+1G>T int 4 5 0.6% 21 1.7% 790C>T Q220X 6a 1 0.1% 875+1G>C int 6a 1 0.4% 905delG 6b 1 0.1% 1065C>G F311L 7 2 0.3% 1078delT 7 28 3.6% 1132C>T R334W 7 1 0.1% 1172G>A R347H 7 5 0.6% 1172G>T R347L 7 1 0.1% 1172G>C R347P 7 1 0.1% 1187G>A R352Q 7 3 0.2% 2 0.7% 1208A>G Q359R 7 1 0.1% 1154insTC 7 2 0.2% 1221delCT 7 2 0.3% 1248+1G>A int 7 1 0.1% 1249-27delTA int 7 1 0.4% 1334G>A W401X 8 1 0.1% 1461ins4 9 5 0.4% 1471delA 9 2 0.2% 1607C>T S492F 10 2 0.3% 1609C>T Q493X 10 1 0.1% 1648_1653delATC I507del 10 3 0.4% 10 0.8% 1 0.4% 1652_1655del 3 bp F508del 10 582 74.8% 966 76.5% 226 81.3% 1690G>T V520F 10 4 0.3% 1717-1G>A int 10 8 1.0% 9 0.7% 1756G>T G542X 11 5 0.6% 8 0.6% 1779T>G S549R 11 1 0.1% 1784G>A G551D 11 29 3.7% 82 6.5% 27 9.7% 1789C>G R553G 11 1 0.1% 1789C>T R553X 11 3 0.4% 1 0.1% 1806delA 11 1 0.1% 1811G>A R560K 11 2 0.3% 1811G>C R560T 11 30 2.4% 2 0.7% 1819T>A Y563N 12 1 0.1% 1853C>A P574H 12 1 0.1% 1898+1G>A int 12 1 0.1% 2184delA 13 1 0.1% 1 0.1% 2184insA 13 1 0.1% 2622+1G>A int 13 1 0.1% 2 0.2% 2622+1G>T int 13 1 0.1% 2623-2A>G ** int 13 1 0.1% 2670G>A W846X2 14a 8 1.0% 2752-1G>T int 14a 1 0.1% 2752-26A>G int 14a 2 0.2% 2789+5G>A int 14b 6 0.8% 2966C>T S945L 15 2 0.3% 3007delG 15 4 0.3% 3040G>C G970R 15 1 0.1% 3062C>T S977F 16 1 0.1% 3120+1G>A int 16 1 0.1% 3272-26A>G int 17a 4 0.5% 2 0.2% 2 0.7% 3320dupli(CTATG) 17b 1 0.1% 3329G>A R1066H 17b 1 0.1% 3340C>T R1070W 17b 1 0.1% 3408C>A Y1092X 17b 7 0.9% 3442G>T E1104X 17b 1 0.1% 3446T>G ** M1105R 17b 1 0.1% 3586G>C D1152H 18 1 0.1% 3601-17T>C + 1367delC int 18 + 9 1 0.1% 3616C>T R1162X 19 1 0.1% 2 0.2% 3659delC 19 2 0.2% 3832A>G I1234V 19 2 0.3% 3849+4A>G int 19 1 0.1% 3849+10kbC>T int 19 3 0.2% 3877G>A G1249R 20 1 0.1% 3884G>A S1251N 20 1 0.1% 3898insC 20 1 0.1% 3905insT 20 2 0.3% 3978G>A W1282X 20 3 0.4% 4005+1G>A int 20 6 0.8% 4016insT 21 1 0.1% 4041C>G N1303K 21 11 1.4% 5 0.4% 4136T>C L1335P 22 1 0.1% 1 0.4% 4279insA 23 1 0.1% Unidentified Unidentified - 3 0.4% 41 3.2% 11 4.0% Total 778 100.0% 1262 100.0% 278 100.0% * All nucleotide changes correspond to cDNA numbering.
X
ABCC7 p.Phe311Leu 12815607:64:531
status: NEW[hide] Pharmacological induction of CFTR function in pati... Pediatr Pulmonol. 2005 Sep;40(3):183-96. Kerem E
Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.
Pediatr Pulmonol. 2005 Sep;40(3):183-96., [PMID:15880796]
Abstract [show]
CFTR mutations cause defects of CFTR protein production and function by different molecular mechanisms. Mutations can be classified according to the mechanisms by which they disrupt CFTR function. This understanding of the different molecular mechanisms of CFTR dysfunction provides the scientific basis for the development of targeted drugs for mutation-specific therapy of cystic fibrosis (CF). Class I mutations are nonsense mutations that result in the presence of a premature stop codon that leads to the production of unstable mRNA, or the release from the ribosome of a short, truncated protein that is not functional. Aminoglycoside antibiotics can suppress premature termination codons by disrupting translational fidelity and allowing the incorporation of an amino acid, thus permitting translation to continue to the normal termination of the transcript. Class II mutations cause impairment of CFTR processing and folding in the Golgi. As a result, the mutant CFTR is retained in the endoplasmic reticulum (ER) and eventually targeted for degradation by the quality control mechanisms. Chemical and molecular chaperones such as sodium-4-phenylbutyrate can stabilize protein structure, and allow it to escape from degradation in the ER and be transported to the cell membrane. Class III mutations disrupt the function of the regulatory domain. CFTR is resistant to phosphorylation or adenosine tri-phosphate (ATP) binding. CFTR activators such as alkylxanthines (CPX) and the flavonoid genistein can overcome affected ATP binding through direct binding to a nucleotide binding fold. In patients carrying class IV mutations, phosphorylation of CFTR results in reduced chloride transport. Increases in the overall cell surface content of these mutants might overcome the relative reduction in conductance. Alternatively, restoring native chloride pore characteristics pharmacologically might be effective. Activators of CFTR at the plasma membrane may function by promoting CFTR phosphorylation, by blocking CFTR dephosphorylation, by interacting directly with CFTR, and/or by modulation of CFTR protein-protein interactions. Class V mutations affect the splicing machinery and generate both aberrantly and correctly spliced transcripts, the levels of which vary among different patients and among different organs of the same patient. Splicing factors that promote exon inclusion or factors that promote exon skipping can promote increases of correctly spliced transcripts, depending on the molecular defect. Inconsistent results were reported regarding the required level of corrected or mutated CFTR that had to be reached in order to achieve normal function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
58 C-D565G II DF508 D1507 S549R S549I S549N S549R S945D S945L H1054D G1061R L1065P R1066C R1066M L1077P H1085R N1303K G85E III G551D S492F V520F R553G R560T R560S Y569D IV R117H, R117C, R117P, R117L D1152H, L88S, G91R, E92K, Q98R, P205S, L206W, L227R, F311L, G314E, R334W, R334Q, I336K, T338I, L346P, R347C, R347H, R347L, R347P, L927P, R1070W, R1070Q V 3849 þ 10 kb C !
X
ABCC7 p.Phe311Leu 15880796:58:249
status: NEW[hide] A new large CFTR rearrangement illustrates the imp... Hum Mutat. 2006 Jul;27(7):716-7. Niel F, Legendre M, Bienvenu T, Bieth E, Lalau G, Sermet I, Bondeux D, Boukari R, Derelle J, Levy P, Ruszniewski P, Martin J, Costa C, Goossens M, Girodon E
A new large CFTR rearrangement illustrates the importance of searching for complex alleles.
Hum Mutat. 2006 Jul;27(7):716-7., [PMID:16786510]
Abstract [show]
The p.Val754Met variant, described in 1996 in a CF patient, has been considered a CF mutation. However, biochemical aspects, results of functional studies and, finally, the identification of a complex deletion removing exons 3 to 10 and 14b to 16 in cis of p.Val754Met in a CF patient, argue against a strong deleterious effect. An inventory through the French CF network of patients carrying p.Val754Met led to the registration of seven patients (CF: n=4; idiopathic chronic pancreatitis: n=3) and six healthy individuals, all heterozygous for the variation. Extensive CFTR gene analysis was carried out, including the search for large rearrangements and other possible mutations. The complex deletion, whose breakpoints are described here, was found only in the four CF patients, in association with the same haplotype. This data, added to the fact that the p.[Phe508del]+[Val754Met] genotype was found in a healthy individual, bring further arguments against the association of p.Val754Met with CF. We thus suggest looking for a possible complex allele whenever p.Val754Met is detected and considering it neutral regarding genetic counseling when found in isolation.
Comments [show]
None has been submitted yet.
No. Sentence Comment
86 [Phe508del]+[Phe311Leu] compound heterozygous, though no family study could be performed in this case, as this genotype has already been described in CF (www.genet.sickkids.on.ca/cftr).
X
ABCC7 p.Phe311Leu 16786510:86:13
status: NEW89 [Phe508del]+[Phe311Leu] compound heterozygous genotype, no other CF symptom was observed in this patient, and the family declined any further clinical and molecular investigation at present towards assessment of CFTR dysfunction.
X
ABCC7 p.Phe311Leu 16786510:89:13
status: NEW33 Phenotype and genotype data of patients/individuals carrying the p.Val754Met variation Patient Phenotype Origin Allele 1 Allele 2 CFTR haplotype linked to p.Val754Met c p.Val754Met b CFTRdele3_10, 14b_16 b 1a CF Kabylia + + 1812-1G>A (c.1680-1G>A) 22; del; del; 7; 17 2 CF Northwestern France + + 3659delC (c.3528delC) 22; del; del; 7; 17 3 CF Algeria + + p.Asn1303Lys 22; del; del; 7; 17 4 CF Turkey + + p.Phe508del 22; del; del; 7; 17 5 Chronic pancreatitis Portugal + - but p.Phe311Leu p.Phe508del 22; 23; 10-9; 7; 17 6 Chronic pancreatitis Not known + - IVS8(TG)12(T)5 (c.1210-34(TG)12(T)5) 21 or 23; 16; 107; 7; 17 7 Chronic pancreatitis Northern France + - IVS8(TG)11(T)5 (c.1210-34(TG)11(T)5) 22; 23; 10-9; 7; 17 8 healthy Southwestern France + - p.Phe508del 22; 23; 10-9; 7; 17 9 healthy Northern France + - Wild 22; 23; 10-9; 7; 17 10 healthy Northern France + - Wild 22; 16 or 21; 109; 7; 17 11 healthy Northern France + - Wild 22; 23; 10-9; 7; 17 12 healthy Turkey + - Wild 22; 23; 10-9; 7; 17 13 healthy France + - Wild 22; 23; 10-9; 7; 17 The recommendations for mutation nomenclature (www.hgvs.org/mutnomen/) were used to name CFTR gene sequence variations at the protein level. For variations described at the nucleotide level, the A of the ATG translation start codon was numbered as +133 in accordance with the current CFTR gene numbering based on cDNA sequence (GenBank NM_000492.2) and on the CF mutation database. These variations were also given in parentheses following the approved nomenclature format (A of the ATG translation start codon as +1, "c."
X
ABCC7 p.Phe311Leu 16786510:33:479
status: NEW59 Patient #5, already heterozygous for p.Phe508del, was found to carry the known p.Phe311Leu CF mutation.
X
ABCC7 p.Phe311Leu 16786510:59:81
status: NEW87 We also hypothesize that p.Val754Met is in cis with p.Phe311Leu rather than with p.Phe508del, because of the putative frequent haplotype linked to p.Phe508del, [IVS1(CA)22; IVS8(CA)23; IVS8(TG)10(T)9; IVS17b(TA)31; IVS17b(CA)13], the other haplotype being identical to that found in other p.Val754Met alleles (Table 1).
X
ABCC7 p.Phe311Leu 16786510:87:54
status: NEW[hide] Identification of CFTR, PRSS1, and SPINK1 mutation... Pancreas. 2006 Oct;33(3):221-7. Keiles S, Kammesheidt A
Identification of CFTR, PRSS1, and SPINK1 mutations in 381 patients with pancreatitis.
Pancreas. 2006 Oct;33(3):221-7., [PMID:17003641]
Abstract [show]
OBJECTIVES: Chronic pancreatitis is a progressive inflammatory disorder leading to irreversible exocrine and/or endocrine impairment. It is well documented that mutations in the cationic trypsinogen (PRSS1) gene can cause hereditary pancreatitis. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) and the serine protease inhibitor Kazal type 1 (SPINK1) genes are also associated with pancreatitis. METHODS: We analyzed 381 patients with a primary diagnosis of chronic or recurrent pancreatitis using the Ambry Test: Pancreatitis to obtain comprehensive genetic information for the CFTR, SPINK1, and PRSS1 genes. RESULTS: The results identified 32% (122/381) of patients with 166 mutant CFTR alleles, including 12 novel CFTR variants: 4375-20 A>G, F575Y, K598E, L1260P, G194R, F834L, S573C, 2789 + 17 C>T, 621+83 A>G, T164S, 621+25 A>G, and 3500-19 G>A. Of 122 patients with CFTR mutations, 5.5% (21/381) also carried a SPINK1 mutation, and 1.8% (7/381) carried a PRSS1 mutation. In addition, 8.9% (34/381) of all patients had 1 of 11 different SPINK1 mutations. Another 6.3% (24/381) of the patients had 1 of 8 different PRSS1 mutations. Moreover, 1.3% of the patients (5/381) had 1 PRSS1 and 1 SPINK1 mutation. A total 49% (185/381) of the patients carried one or more mutations. CONCLUSIONS: Comprehensive testing of the CFTR, PRSS1, and SPINK1 genes identified genetic variants in nearly half of all subjects considered by their physicians as candidates for genetic testing. Comprehensive test identified numerous novel variants that would not be identified by standard clinical screening panels.
Comments [show]
None has been submitted yet.
No. Sentence Comment
54 Patients With More Than 1 CFTR Mutation CFTR Mutation 1 CFTR Mutation 2 CFTR Mutation 3 No. of Patients deltaF508 5T 3 deltaF508 D1152H 1 deltaF508 deltaF508 1 deltaF508 F575Y 1 deltaF508 K598E 1 deltaF508 T164S 1 deltaF508 R74W D1270N 1 deltaF508 Q1476X 1 deltaF508 L997F 1 R553X D1152H 1 R553X G1069R 1 2789+5 G9A 2183 AA9G 1 3849+10kb C9T L1260P 1 711+3 A to G I1139V 1 1341+1 G9A G194R 5T 1 621+25 A9G 3500-19 C9T 1 R74W V855I 1 G542X R117H 1 G551D F311L 1 G576A R668C 2 K710X L997F 1 L997F L320V 1 G1069R 5T 1 1818+18 G9A 5T 1 F1074L 5T 1 F834L 5T 1 R74Q R297Q 1 R74Q R297Q 5T 1 R785Q 5T 1 R117H 5T 3 deltaF508 I1027T 1 Total patients 36 MutationsinboldfacewouldnothavebeendetectedbytheAmericanCollegeofObstetrics and Gynecology (ACOG)/American College of Medical Genetics (ACMG) mutation panel.
X
ABCC7 p.Phe311Leu 17003641:54:453
status: NEW[hide] Genetic testing in pancreatitis. Gastroenterology. 2010 Jun;138(7):2202-6, 2206.e1. Epub 2010 Apr 20. Ooi CY, Gonska T, Durie PR, Freedman SD
Genetic testing in pancreatitis.
Gastroenterology. 2010 Jun;138(7):2202-6, 2206.e1. Epub 2010 Apr 20., [PMID:20416310]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
53 Interpretation of Mutations Requires an Understanding of Their Functional Consequences Mutation group Reported mutations Complex allele: These mutations are recognized to occur on a single allele R117H ϩ T G576A ϩ R668C F508del ϩ I1027T Benign sequence alterations: These mutations have no known clinical consequence R74Q R297Q R74W 621 * 25 AϾG 3500-19 CϾT T164S C855I I1139V CFTR-related disorder associated: These mutations have been described in individuals with CF-like single organ disease (such as pancreatitis, sinopulmonary disease, or obstructive azoospermia), but do not fulfill the diagnostic criteria for CF 5T R117H D1270N L320V Q1352H 1818-18 GϾA S1235R CF causing F508del Q1476X R553X K710X G542X G551D F311L 2789-5 GϾA 2183AAϾG 711ϩ3 AϾG 3849ϩ10kb CϾT 1341ϩ1GϾA D1152Ha F1074La R553X Unknown clinical consequence F575Y L1260P G194R G1069R L997F K598E F834L R785Q To illustrate this point, mutations identified by extensive mutation testing in a cohort of patients with recurrent acute or chronic pancre- atitis14 are listed according to their clinical consequences (based on current consensus guidelines13 and functional and/or clinical reports; available: http://www.genet.sickkids.on.ca).
X
ABCC7 p.Phe311Leu 20416310:53:755
status: NEW[hide] Estimating the age of CFTR mutations predominantly... J Cyst Fibros. 2008 Mar;7(2):168-73. Epub 2007 Sep 6. Fichou Y, Genin E, Le Marechal C, Audrezet MP, Scotet V, Ferec C
Estimating the age of CFTR mutations predominantly found in Brittany (Western France).
J Cyst Fibros. 2008 Mar;7(2):168-73. Epub 2007 Sep 6., [PMID:17825628]
Abstract [show]
BACKGROUND: Disparities in the spectrum of mutations within the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene are commonly observed in populations from different ethnical and/or geographical origins. The occurrence of CF in Brittany (western France) is one of the highest in populations from Caucasian origin (<1/2000 in specific areas). The W846X(2), 1078delT and G551D mutations, as well as the I1027T polymorphism in cis with the DeltaF508 mutation (currently referred to as p.F508del) are particularly frequent in this area. We investigated the age of the respective variants in the region of interest. METHODS: Several polymorphic markers surrounding the CFTR gene were genotyped. Allele frequencies as well as mutation rates and other parameters were used to calculate the respective age of the most recent common ancestors in the region of interest by a previously employed, simple likelihood-based method. RESULTS: Following haplotype reconstruction and simulation, the ages were estimated to be approximately 600, 1000, 1200 and 600 years, respectively (with a 95% confidence interval). CONCLUSIONS: These datings thus provide historical insights in the context of understanding population migrations. They also underline the usefulness of this method for estimating the age of rare mutations with a limited number of carriers.
Comments [show]
None has been submitted yet.
No. Sentence Comment
51 Primers amplifying the regions of interest were designed with PrimerQuestSM from Table 1 Genotypes of CF patients W846X2 1078delT G551D Mutation in trans Number Mutation in trans Number Mutation in trans Number ΔF508 6 ΔF508 21 ΔF508 18 R117C 1 1078delTa 2 E60K 1 ΔI507 1 4005+1GNA 2 W79X 1 Y563N 1 L610S 1 C225X 1 1078delTb 1 W846X2 b 1 F311L 1 621+1GNT 1 R1066H 1 R347H 1 2789+5GNA 1 1221delCT 1 G542X 1 3849+4ANG 1 1717-1GNA 1 G551D 1 3659delC 1 R553G 1 S942F 1 Y1092X 1 621+1GNT 1 2789+5GNA 1 4006-1GNA 1 Unidentified 1 Total 13 Total 31 Total 32 a One particular case: in this individual, the two chromosomes 7 are identical by descent.
X
ABCC7 p.Phe311Leu 17825628:51:358
status: NEW[hide] Diagnostic testing by CFTR gene mutation analysis ... J Mol Diagn. 2005 May;7(2):289-99. Schrijver I, Ramalingam S, Sankaran R, Swanson S, Dunlop CL, Keiles S, Moss RB, Oehlert J, Gardner P, Wassman ER, Kammesheidt A
Diagnostic testing by CFTR gene mutation analysis in a large group of Hispanics: novel mutations and assessment of a population-specific mutation spectrum.
J Mol Diagn. 2005 May;7(2):289-99., [PMID:15858154]
Abstract [show]
Characterization of CFTR mutations in the U.S. Hispanic population is vital to early diagnosis, genetic counseling, patient-specific treatment, and the understanding of cystic fibrosis (CF) pathogenesis. The mutation spectrum in Hispanics, however, remains poorly defined. A group of 257 self-identified Hispanics with clinical manifestations consistent with CF were studied by temporal temperature gradient electrophoresis and/or DNA sequencing. A total of 183 mutations were identified, including 14 different amino acid-changing novel variants. A significant proportion (78/85) of the different mutations identified would not have been detected by the ACMG/ACOG-recommended 25-mutation screening panel. Over one third of the mutations (27/85) occurred with a relative frequency >1%, which illustrates that the identified mutations are not all rare. This is supported by a comparison with other large CFTR studies. These results underscore the disparity in mutation identification between Caucasians and Hispanics and show utility for comprehensive diagnostic CFTR mutation analysis in this population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
98 Spectrum of CFTR Sequence Variants in 257 Hispanic Patients Who Underwent Diagnostic DNA Testing for CF Mutations in 257 patients Allele counts of each mutation % of variant alleles (183) % of all alleles tested (514) ACMG/ACOG recommended 25 mutation panel* DeltaF508 53 28.96 10.31 G542X 7 3.83 1.36 R334W 2 1.09 0.39 R553X 2 1.09 0.39 DeltaI507 1 0.55 0.19 1717 - 1 GϾA 1 0.55 0.19 3120 ϩ 1 GϾA 1 0.55 0.19 7 different mutations 67 36.61 13.04 All mutations included ACMG/ACOG 1248 ϩ 1 GϾA 1 0.55 0.19 1249 - 29delAT 1 0.55 0.19 1288insTA1288insTA 1 0.55 0.19 1341 ϩ 80 GϾA1341 ϩ 80 GϾA 1 0.55 0.19 1429del71429del7 1 0.55 0.19 1525 - 42 GϾA1525 - 42 GϾA 1 0.55 0.19 1717 - 1 GϾA 1 0.55 0.19 1717 - 8 GϾA 2 1.09 0.39 1811 ϩ 1 GϾA1811 ϩ 1 GϾA 1 0.55 0.19 2055del9-ϾA 3 1.64 0.58 2105-2117del13insAGAAA 1 0.55 0.19 2215insG 1 0.55 0.19 2585delT2585delT 1 0.55 0.19 2752 - 6 TϾC 1 0.55 0.19 296 ϩ 28 AϾG 1 0.55 0.19 3120 ϩ 1 GϾ A 1 0.55 0.19 3271 ϩ 8 AϾG3271 ϩ 8 AϾG 1 0.55 0.19 3271delGG 1 0.55 0.19 3272 - 26 AϾG 2 1.09 0.39 3876delA 2 1.09 0.39 4016insT 1 0.55 0.19 406 - 1 GϾA 6 3.28 1.17 406 - 6 TϾC 1 0.55 0.19 4374 ϩ 13 A ϾG 1 0.55 0.19 663delT 1 0.55 0.19 874insTACA874insTACA 1 0.55 0.19 A1009T 2 1.09 0.39 A559T 1 0.55 0.19 D1152H 1 0.55 0.19 D1270N 3 1.64 0.58 D1445N 2 1.09 0.39 D836Y 1 0.55 0.19 DeltaF311 1 0.55 0.19 DeltaF508 53 28.96 10.31 DeltaI507 1 0.55 0.19 E116K 2 1.09 0.39 E585X 1 0.55 0.19 E588VE588V 2 1.09 0.39 E831X 1 0.55 0.19 F311L 1 0.55 0.19 F693L 1 0.55 0.19 G1244E 1 0.55 0.19 G542X 7 3.83 1.36 G576A 1 0.55 0.19 H199Y 3 1.64 0.58 I1027T 3 1.64 0.58 I285FI285F 1 0.55 0.19 L206W 3 1.64 0.58 L320V 1 0.55 0.19 L967S 1 0.55 0.19 L997F 3 1.64 0.58 P1372LP1372L 1 0.55 0.19 P205S 1 0.55 0.19 P439SP439S 1 0.55 0.19 Q1313X 1 0.55 0.19 Q890X 2 1.09 0.39 Q98R 1 0.55 0.19 R1066C 1 0.55 0.19 R1066H 1 0.55 0.19 (Table continues) missense variant, I1027T (3212TϾC), in exon 17a.25 Family studies have not been performed to identify which allele carries two mutations.
X
ABCC7 p.Phe311Leu 15858154:98:1647
status: NEW187 CFTR Sequence Variants Identified in Five Comprehensive CFTR Studies in US Hispanics CFTR mutations Alleles Relative mutation frequency (%) (of 317) deltaF508 123 38.80 3876delA 15 4.70 G542X 12 3.80 406 - 1GϾA 8 2.50 3849 ϩ 10kbCϾT 5 1.60 R75X 4 1.30 935delA 4 1.30 S549N 4 1.30 W1204X 4 1.30 R334W 4 1.30 2055del9ϾA 3 1 R74W 3 1 H199Y 3 1 L206W 3 1 663delT 3 1 3120 ϩ 1GϾA 3 1 L997F 3 1 I1027T 3 1 R1066C 3 1 W1089X 3 1 D1270N 3 1 2105del13insAGAAA 3 1 Q98R 2 Ͻ1 E116K 2 Ͻ1 I148T 2 Ͻ1 R668C 2 Ͻ1 P205S 2 Ͻ1 V232D 2 Ͻ1 S492F 2 Ͻ1 T501A 2 Ͻ1 1949del84 2 Ͻ1 Q890X 2 Ͻ1 3271delGG 2 Ͻ1 3272 - 26AϾG 2 Ͻ1 G1244E 2 Ͻ1 D1445N 2 Ͻ1 R553X 2 Ͻ1 E588V 2 Ͻ1 1717 - 8GϾA 2 Ͻ1 A1009T 2 Ͻ1 S1235R 2 Ͻ1 G85E 1 Ͻ1 296 ϩ 28AϾG 1 Ͻ1 406 - 6TϾC 1 Ͻ1 V11I 1 Ͻ1 Q179K 1 Ͻ1 V201 mol/L 1 Ͻ1 874insTACA 1 Ͻ1 I285F 1 Ͻ1 deltaF311 1 Ͻ1 F311L 1 Ͻ1 L320V 1 Ͻ1 T351S 1 Ͻ1 R352W 1 Ͻ1 1248 ϩ 1GϾA 1 Ͻ1 1249 - 29delAT 1 Ͻ1 1288insTA 1 Ͻ1 1341 ϩ 80GϾA 1 Ͻ1 1429del7 1 Ͻ1 1525 - 42GϾA 1 Ͻ1 P439S 1 Ͻ1 1717 - 1GϾA 1 Ͻ1 1811 ϩ 1GϾA 1 Ͻ1 deltaI507 1 Ͻ1 G551D 1 Ͻ1 A559T 1 Ͻ1 Y563N 1 Ͻ1 (Table continues) In this study, we used temporal temperature gradient gel electrophoresis (TTGE) and direct DNA sequencing to increase the sensitivity of mutation detection in U.S. Hispanics, and to determine whether additional mutations are recurrent.
X
ABCC7 p.Phe311Leu 15858154:187:1044
status: NEW[hide] Spectrum of CFTR mutations in cystic fibrosis and ... Hum Mutat. 2000;16(2):143-56. Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD
Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France.
Hum Mutat. 2000;16(2):143-56., [PMID:10923036]
Abstract [show]
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
106 e M1V, R75X, L165S, F311L, R560K, 1898+1G>C, 1949del84, 2113delA, 2184delA, R792X, W846X2, 3121-1G>A, H1054D, 3737delA, D1270N+R74W.
X
ABCC7 p.Phe311Leu 10923036:106:20
status: NEW[hide] Haplotype analysis of 94 cystic fibrosis mutations... Hum Mutat. 1996;8(2):149-59. Morral N, Dork T, Llevadot R, Dziadek V, Mercier B, Ferec C, Costes B, Girodon E, Zielenski J, Tsui LC, Tummler B, Estivill X
Haplotype analysis of 94 cystic fibrosis mutations with seven polymorphic CFTR DNA markers.
Hum Mutat. 1996;8(2):149-59., [PMID:8844213]
Abstract [show]
We have analyzed 416 normal and 467 chromosomes carrying 94 different cystic fibrosis (CF) mutations with polymorphic genetic markers J44, IVS6aGATT, IVS8CA, T854, IVS17BTA, IVS17BCA, and TUB20. The number of mutations found with each haplotype is proportional to its frequency among normal chromosomes, suggesting that there is no preferential haplotype in which mutations arise and thus excluding possible selection for specific haplotypes. While many common mutations in the worldwide CF population showed absence of haplotype variation, indicating their recent origins, some mutations were associated with more than one haplotype. The most common CF mutations, delta F508, G542X, and N1303K, showed the highest number of slippage events at microsatellites, suggesting that they are the most ancient CF mutations. Recurrence was probably the case for 9 CF mutations (R117H, H199Y, R347YH, R347P, L558S, 2184insA, 3272-26A-->G, R1162X, and 3849 + 10kbC-->T). This analysis of 94 CF mutations should facilitate mutation screening and provides useful data for studies on population genetics of CF.
Comments [show]
None has been submitted yet.
No. Sentence Comment
106 (1992) Dork et al. (1994a) Malone et al. (personal communication) Claustreset al. (1992) Ferec et al. (1992) Fanen et al. (1992) lvaschenko et al. (1991) T. Dork (personal communication) Dean et al. (1990) Dork et al. (1994a) Ferec et al. (1992) Bozon et al. (1994) Costes et al. (personal communication) Fanen et al. (1992) Audrezet et al. (personal communication) Zielenski et al. (1991a) Zielenski et al. (1991a) Granell et al. (1992) Highsmith et al. (1990) Mercier et al. (1993b) Vidaud et al. (1990) Fanen et al. (1992) Fanen et al. (1992) Dork et al. (1994b) (continued) HAPLOTYPESFOR 94 CF MUTATIONS TABLE2. CFTR HaplotvpesforDiallelic and Multiallelic DNA Markers for 94 CF Mutations"(Continued) ~~ ~ J44-GAIT- 8CA-17BTA- No. of TSU-TUB20 17BCA Mutation chromosomes % Normal Laboratory Reference 1-6-1-2 (9.1%) 1-6-2-2 (8.9%) 1-7-1-2 (3.4%) 1-7-2-2 (2.6%) 2-7-1-1 (1.2%) 2-7-2-2 (0.7%) 17-7-16 16-7-18 16-7-17 15-7-17 24-31-13 23-52-13 23-34-13 23-33-14 23-33-13 23-32-13 23-31-13 23-30-13 23-21-19 23-18-13 22-35-13 22-31-13 22-30-13 21-31-13 19-33-13 18-45-13 18-37-13 18-35-13 17-57-11 17-55-13 17-55-11 17-54-11 17-53-11 17-52-11 17-51-11 17-33-13 16-46-13 16-45-13 16-44-13 16-42-13 16-35-13 16-30-13 16-30-13 16-7-17 16-21-19 L107% L1077P 24ldelAT L719X A1507 3849+10kbC-T 2184insA 2991de132 G551D 1154insTC V520F R560T 4114ATA+lT 3667de14 435insA Q414X C225R Q39X N1303K R1162X H199Y G542X G542X w1204x R347H G542X AF50gb N1303K 2143delT 3849f 10kbC-T N1303K 681delC R347H A455E N1303K A120T 621+1 h T 574delA 1221delCT F311L R560K R553X R533X R553X Q552X R553X Q552X R116W R553X 1898+5 h T 3272-26A-G 1717-1hA 1342-2A-C A1507 2869insG 2869insG E92X 4374+1 h T 2183AA-G R117H 1609delCA I336K W1063X 1 1 1 1 6 1 3 1 1 22 17 1 1 1 1 1 1 1 1 1 1 1 1 1 17 1 1 4 157 7 1 2 2 1 1 2 2 1 9 1 1 1 1 1 1 6 1 1 1 2 1 3 2 1 3 1 1 1 4 2 4 1 1 - - 10.33 1.45 - - 0.48 1.45 - 0.24 1.45 0.24 - - - - 0.24 0.48 - - - - - - 0.49 0.48 - 0.24 0.24 0.24 - - - - - 0.72 0.24 0.72 - t h fP h b.fb,fP h b,fp.t t h b.fb.fp,h,t b.fb.fp,h,t t t t h b h h fP h fP fb b fP b.fb,fP,h.t fP fb b,fP,t b.fb,fp,h,t b.fb,h h h h,t t fb t b b b.fb.t fP fb fb tb h fP h h t t b h t h b b h h b,fb,h fP.h b h fP fP Bozon et al. (1994) Fanen et al. (1992) Dork et al. (1994a) Kerem et al. (1990) Dork et al. (1994~) Cutting et al. (1990) Kerem et al. (1990) lannuui et d.
X
ABCC7 p.Phe311Leu 8844213:106:1538
status: NEW[hide] Neonatal screening for cystic fibrosis: result of ... Hum Genet. 1995 Nov;96(5):542-8. Ferec C, Verlingue C, Parent P, Morin JF, Codet JP, Rault G, Dagorne M, Lemoigne A, Journel H, Roussey M, et al.
Neonatal screening for cystic fibrosis: result of a pilot study using both immunoreactive trypsinogen and cystic fibrosis gene mutation analyses.
Hum Genet. 1995 Nov;96(5):542-8., [PMID:8530001]
Abstract [show]
We have evaluated a two-tier neonatal cystic fibrosis (CF) screening of immunoreactive trypsinogen (IRT) followed by CFTR gene mutation analysis using a systematic scanning of exons 7, 10, and 11, and, if necessary, by direct DNA sequencing. Over an 18-month period we screened 32,300 neonates born in the western part of Britanny. The first tier, involving IRT screening at 3 days of age, utilizes a low elevation of the trypsinogen level (600 ng/ml), which is highly sensitive. The second tier, which corresponds to the exhaustive screening for mutations in three exons of the gene, is highly specific for this population (Britanny). The false positive rate is very low, and no false negatives have been reported to date. This strategy has allowed the identification of five novel alleles (V322A, V317A, 1806 del A, R553G, G544S).
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 Identification of novel mutations The systematic screening of exons 7, 10, and I I performed on each positive Guthrie card during this period has led us to identify five new mutations in the CFTR 30 545 % of non AF508 mutations 20 9 1717-1G->A 10 & & i i Esox G91R I 621+1G->T R117H 6b[ 7 905delG 1078 del T R347H 1221 det CT F311L R347L i10 i11i12 13 14a~l !
X
ABCC7 p.Phe311Leu 8530001:80:327
status: NEW[hide] Structural analysis of CFTR gene in congenital bil... Clin Chem. 1995 Jun;41(6 Pt 1):833-5. Jezequel P, Dorval I, Fergelot P, Chauvel B, Le Treut A, Le Gall JY, Le Lannou D, Blayau M
Structural analysis of CFTR gene in congenital bilateral absence of vas deferens.
Clin Chem. 1995 Jun;41(6 Pt 1):833-5., [PMID:7539342]
Abstract [show]
Congenital bilateral absence of the vas deferens (CBAVD) is found in most males with cystic fibrosis (CF), but this malformation can be observed without any pulmonary or digestive features. We have analyzed 13 exons of the CF gene in a cohort of 25 CBAVD patients. Among the 50 chromosomes studied, 24 mutations were identified: delta F508 (14 cases), R117H (7 cases), R1070W (2 cases), 621 + 1 G --> T (1 case), and A1067V (1 case). Except for delta F508, the most frequent mutations (R117H, R1070W) were not observed in the CF group (109 patients) studied in our laboratory. We discuss the significance of these results.
Comments [show]
None has been submitted yet.
No. Sentence Comment
46 SF508/ SF508 SF508 / N1303K AF508/ G551D SF508 / 3272-26G--*A SF508 / 1078 delT F508/Y1092X SF508 / Ai507 F5O8 / G542X SF508 / 621+1G-T F508 / 3898 insC SF508 / 574 delA AF508 / G85E SF508 / W1282X N1303K/F311L G551D/F311L R553X I?
X
ABCC7 p.Phe311Leu 7539342:46:205
status: NEWX
ABCC7 p.Phe311Leu 7539342:46:217
status: NEW47 N1303K/?
X
ABCC7 p.Phe311Leu 7539342:47:205
status: NEWX
ABCC7 p.Phe311Leu 7539342:47:217
status: NEW[hide] CFTR mutations spectrum and the efficiency of mole... PLoS One. 2014 Feb 26;9(2):e89094. doi: 10.1371/journal.pone.0089094. eCollection 2014. Zietkiewicz E, Rutkiewicz E, Pogorzelski A, Klimek B, Voelkel K, Witt M
CFTR mutations spectrum and the efficiency of molecular diagnostics in Polish cystic fibrosis patients.
PLoS One. 2014 Feb 26;9(2):e89094. doi: 10.1371/journal.pone.0089094. eCollection 2014., [PMID:24586523]
Abstract [show]
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR). In light of the strong allelic heterogeneity and regional specificity of the mutation spectrum, the strategy of molecular diagnostics and counseling in CF requires genetic tests to reflect the frequency profile characteristic for a given population. The goal of the study was to provide an updated comprehensive estimation of the distribution of CFTR mutations in Polish CF patients and to assess the effectiveness of INNOLiPA_CFTR tests in Polish population. The analyzed cohort consisted of 738 patients with the clinically confirmed CF diagnosis, prescreened for molecular defects using INNOLiPA_CFTR panels from Innogenetics. A combined efficiency of INNOLiPA CFTR_19 and CFTR_17_TnUpdate tests was 75.5%; both mutations were detected in 68.2%, and one mutation in 14.8% of the affected individuals. The group composed of all the patients with only one or with no mutation detected (109 and 126 individuals, respectively) was analyzed further using a mutation screening approach, i.e. SSCP/HD (single strand conformational polymorphism/heteroduplex) analysis of PCR products followed by sequencing of the coding sequence. As a result, 53 more mutations were found in 97 patients. The overall efficiency of the CF allele detection was 82.5% (7.0% increase compared to INNOLiPA tests alone). The distribution of the most frequent mutations in Poland was assessed. Most of the mutations repetitively found in Polish patients had been previously described in other European populations. The most frequent mutated allele, F508del, represented 54.5% of Polish CF chromosomes. Another eight mutations had frequencies over 1%, 24 had frequencies between 1 and 0.1%; c.2052-2053insA and c.3468+2_3468+3insT were the most frequent non-INNOLiPA mutations. Mutation distribution described herein is also relevant to the Polish diaspora. Our study also demonstrates that the reported efficiency of mutation detection strongly depends on the diagnostic experience of referring health centers.
Comments [show]
None has been submitted yet.
No. Sentence Comment
71 Exon / intron (legacy) Exon / intron (Ensembl) Protein change SVM value cDNA (HGVS nomenclature) gDNA (cDNA +132 bp) Number of PL CF chromosomes Reference a Mutations in trans Pathogenic mutations 1 1 L15Ffs10X c.43delC 175delC 1 CFMDB 1717-1G.A 2 2 G27V 21.92 c.80G.T 212G.T 1 Novel F508del 2 2 S18RfsX16 c.54-5940_273 +10250del21kb exon2,3del21kb 66 IL19 various CF mutations i2 i2 IVS2_Donor c.164+1G.A 296+1G.A 3 CFMDB various CF mutations 3 3 G85E 22.61 c.254G.A 386G.A 1 IL17 unknown 3 3 E60X c.178G.T 310G.T 0 IL17 x 3 3 L88IfsX22 c.262_263delTT 394delTT 0 IL17 x 4 4 E92K 21.92 c.274G.A 406G.A 2 CFMDB c.164+1G.A; c.2051- 2AA.G 4 4 L101X c.302T.G 434T.G 1 CFMDB c.3717+12191C.T 4 4 K114IfsX5 c.341_353del13bp 473del13bp 1 Novel F508del 4 4 R117H 20.35 c.350G.A 482G.A 5 IL17 F508del; 2x unknown 4 4 R117C 22.07 c.349C.T 481C.T 2 CFMDB S1206X;1x unknown 4 4 L137_L138insT c.412_413insACT L138ins 1 CFMDB F508del 4 4 R153I 22.61 c.458G.T 590G.T 2 Novel F508del; c.3527delC i4 i4 IVS4_Donor c.489+1G.T 621+1G.T 5 IL17 F508del; c.489+1G.T 5 5 L165X c.494T.A 626T.A 1 Novel F508del i5 i5 IVS5_Donor c.579+1G.T 711+1G.T 0 IL19 x i5 i5 IVS5_Donor c.579+3A.G 711+3A.G 2 CFMDB 2,3del21kb; c.2052-3insA i5 i5 IVS5_Donor c.579+5G.A 711+5G.A 0 IL17 x 7 8 F311L 20.90 c.933C.G 965C.G 2 CFMDB 2x F508 7 8 G314R 20.58 c.940G.A 1072G.A 4 CFMDB various CF mutations 7 8 F316LfsX12 c.948delT 1078delT 1 IL17 unkown 7 8 R334W 22.41 c.1000C.T 1132C.T 6 IL17 various CF mutations 7 8 I336K 22.07 c.1007T.A 1139T.A 2 CFMDB 2,3de21kb; F508del 7 8 R347P 22.27 c.1040G.C 1172G.C 11 IL17 various CF mutations i7 i8 IVS8_Donor c.1116+2T.A 1248+2T.A 1 Novel Q1412X 9 10 A455E 22.61 c.1364C.A 1496C.A 0 IL17 x i9 i10 IVS10_Donor c.1392+1G.A 1524+1G.A 1 CFMDB c.3816-7delGT 10 11 S466X c.1397C.G 1529C.G 1 CFMDB G542X 10 11 I507del c.1519_1521delATC 1651delATC 2 IL19 F508del 10 11 F508del c.1521_1523delCTT 1654delCTT 805 IL19 various CF mutations i10 i11 IVS11_Acceptor c.1585-1G.A 1717-1G.A 27 IL19 various CF mutations 11 12 G542X c.1624G.T 1756G.T 25 IL19 various CF mutations 11 12 G551D 21.24 c.1624G.T 1756G.T 5 IL19 various CF mutations 11 12 Q552X c.1654C.T 1786C.T 0 IL19 x 11 12 R553X c.1657C.T 1789C.T 14 IL19 various CF mutations 11 12 R560T 21.92 c.1679G.C 1811G.C 0 IL19 x i12 i13 IVS13_Donor c.1766+1G.A 1898+1G.A 6 IL19 various CF mutations i12 i13 IVS13_Donor c.1766+1G.C 1898+1G.C 1 CFMDB F508del 13 14 H620P 21.73 c.1859A.C 1991A.C 1 CFMDB F508del 13 14 R668C//G576A 21.61//1.73 c.2002C.T//c.1727G.C 2134C.T// 1859G.C 5 b CFMDB// rs1800098 c.1585-1G.A; 4 unknown 13 14 L671X c.2012delT 2143delT 27 IL17 various CF mutations 13 14 K684SfsX38 c.2051_2052delAAinsG 2183AA.G 10 IL17 various CF mutations 13 14 K684NfsX38 c.2052delA 2184delA 0 IL17 x 13 14 Q685TfsX4 c.2052_2053insA 2184insA 15 CFMDB various CF mutationsc , 1 unknown Table 2. Cont. Exon / intron (legacy) Exon / intron (Ensembl) Protein change SVM value cDNA (HGVS nomenclature) gDNA (cDNA +132 bp) Number of PL CF chromosomes Reference a Mutations in trans 13 14 L732X c.2195T.G 2327T.G 1 CFMDB F508del 14A 15 R851X c.2551C.T 2683C.T 3 CFMDB various CF mutations 14A 15 I864SfsX28 c.2589_2599del11bp 2721del11bp 2 CFMDB F508del; 2,3del21kb i14B i16 IVS16_Donor c.2657+2_2657+3insA 2789+2insA 1 CFMDB F508del i14B i16 IVS16_Donor c.2657+5G.A 2789+5G.A 0 IL17 unkown 15 17 Y919C 21.02 c.2756A.G 2888A.G 1 CFMDB unknown 15 17 H939HfsX27 c.2817_2820delTACTC 2949delTACTC 1 Novel unkown i15 i17 IVS17_Donor c.2908+3A.C 3040+3A.C 1 Novel F508del i16 i18 IVS18_Donor c.2988+1G.A 3120+1G.A 0 IL19 x 17A 19 I1023_V1024del c.3067_3072delATAGTG 3199del6 0 IL19 x i17A i19 IVS19 c.3140-26A.G 3272-26A.G 9 IL19 various CF mutations 17B 20 L1065R 21.90 c.3194T.G 3326T.G 1 CFMDB F508del 17B 20 Y1092X c.3276C.A 3408C.A 1 CFMDB R334W i18 i21 IVS21_Donor c.3468+2_3468+3insT 3600+2insT 11 CFMDB various CF mutationsd , 1 unknown 18 21 E1126EfsX7 c.3376_3379delGAAG 3508delGAAG 1 Novel F508del 19 22 R1158X c.3472C.T 3604C.T 2 CFMDB F508del; R553X 19 22 R1162X c.3484C.T 3616C.T 1 IL17 F508del 19 22 L1177SfsX15 c.3528delC 3659delC 4 IL17 various CF mutations 19 22 S1206X c.3617C.A 3749C.A 1 CFMDB R117C i19 i22 IVS22 c.3717+12191C.T 3849+10kbC.T 58 IL17 various CF mutations 20 23 G1244R 22.62 c.3730G.C 3862G.C 1 CFMDB F508del 20 23 S1251N 22.28 c.3752G.A 3884G.A 0 IL19 x 20 23 L1258FfsX7 c.3773_3774insT 3905insT 0 IL19 x 20 23 V1272VfsX28 c.3816_3817delGT 3944delGT 1 CFMDB c.1392+1G.A 20 23 W1282X c.3846G.A 3978G.A 9 IL19 various CF mutations 21 24 N1303K 22.62 c.3909C.G 4041C.G 18 IL19 various CF mutations 22 25 V1327X c.3979delG 4111delG 1 Novel F508del 22 25 S1347PfsX13 c.4035_4038dupCCTA c.4167dupCCTA 1 CFMDB 2,3del21kb 23 26 Q1382X c.4144C.T 4276C.T 1 CFMDB F508del 23 26 Q1412X c.4234C.T 4366C.T 2 CFMDB F508del; c.1116+2T.A i23 i26 IVS26_Donor c.4242+1G.T 4374+1G.T 1 CFMDB F508del Sequence changes of uncertain pathogenic effect, tentatively counted as mutations 6A 6 E217G 0.30 c.650A.G 782A.G 1 CFMDB; rs1219109046 unknown 7 8 R352Q 20.01 c.1055G.A 1187G.A 1 CFMDB; rs121908753 F508del 7 8 Q359R 0.33 c.1076A.G 1208A.G 1 CFMDB F508del i8 i9 IVS9 c.1210-12T5_1210- 34_35 (TG)12 1332-12Tn_- 34TGm 6 CFMDB F508del; 3x unknown i8 i9 IVS9 c.1210-12T5_1210- 34_35 (TG)13 1332-12Tn_- 34TGm 2 CFMDB 2143delT; 1x unknown i8 i9 IVS9 c.1210-12T8 1332-12Tn 1 Novel unknown 10 11 I506V 20.21 c.1516A.G 1648A.G 1 CFMDB; rs1800091 unknown 12 13 V562L 0.79 c.1684G.C 1816G.C 1 CFMDB; rs1800097 unknown 13 14 G723V 0.44 c.2168G.T 2300G.T 1 CFMDB; rs200531709 unknown 15 17 D924N 0.03 c.2770G.A 2902G.A 1 CFMDB; rs201759207 unknown patient with F508del on another allele) was not supported by the SVM value (+0.35); the patient was PS and had ambiguous chloride values (45, 64 and 83 mmol/L).
X
ABCC7 p.Phe311Leu 24586523:71:1251
status: NEW154 Table 4. Cont. Mutations a Poland Czechs Slovakia c Germany Lithuania W. Ukraine E. Hungary Romania c Bulgaria Serbia Greece Number of chromosomes 1476 1200 856 700 98 264 80 256 208 352 874 F311L 0.14 0 NA 0 0 0 0 NA 0 0 0 Q1412X 0.14 0 NA 0 0 0 0 NA 0 0 0 Other reported 1.52 8.51 NA 7.10 2.0 1.14 7.50 3.8 12,03 4.28 17.83 Not detected 17.5 0.50 13.89 4.57 35.8 16.29 6.25 27.7 8.17 17.43 9.15 Estimated efficiency of INNOLiPA tests 75.5 89.9 84.0 88.7 61.2 74.6 87.5 69.1 80.3 78.7 73.3 Legend: Data are given in %.
X
ABCC7 p.Phe311Leu 24586523:154:191
status: NEW