ABCC7 p.Arg1162Cys
ClinVar: |
c.3484C>T
,
p.Arg1162*
D
, Pathogenic
|
CF databases: |
c.3485G>T
,
p.Arg1162Leu
N
, Non CF-causing
c.3484C>T , p.Arg1162* D , CF-causing |
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (91%), P: D (95%), Q: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Cystic fibrosis: a worldwide analysis of CFTR muta... Hum Mutat. 2002 Jun;19(6):575-606. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM
Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening.
Hum Mutat. 2002 Jun;19(6):575-606., [PMID:12007216]
Abstract [show]
Although there have been numerous reports from around the world of mutations in the gene of chromosome 7 known as CFTR (cystic fibrosis transmembrane conductance regulator), little attention has been given to integrating these mutant alleles into a global understanding of the population molecular genetics associated with cystic fibrosis (CF). We determined the distribution of CFTR mutations in as many regions throughout the world as possible in an effort designed to: 1) increase our understanding of ancestry-genotype relationships, 2) compare mutational arrays with disease incidence, and 3) gain insight for decisions regarding screening program enhancement through CFTR multi-mutational analyses. Information on all mutations that have been published since the identification and cloning of the CFTR gene's most common allele, DeltaF508 (or F508del), was reviewed and integrated into a centralized database. The data were then sorted and regional CFTR arrays were determined using mutations that appeared in a given region with a frequency of 0.5% or greater. Final analyses were based on 72,431 CF chromosomes, using data compiled from over 100 original papers, and over 80 regions from around the world, including all nations where CF has been studied using analytical molecular genetics. Initial results confirmed wide mutational heterogeneity throughout the world; however, characterization of the most common mutations across most populations was possible. We also examined CF incidence, DeltaF508 frequency, and regional mutational heterogeneity in a subset of populations. Data for these analyses were filtered for reliability and methodological strength before being incorporated into the final analysis. Statistical assessment of these variables revealed that there is a significant positive correlation between DeltaF508 frequency and the CF incidence levels of regional populations. Regional analyses were also performed to search for trends in the distribution of CFTR mutations across migrant and related populations; this led to clarification of ancestry-genotype patterns that can be used to design CFTR multi-mutation panels for CF screening programs. From comprehensive assessment of these data, we offer recommendations that multiple CFTR alleles should eventually be included to increase the sensitivity of newborn screening programs employing two-tier testing with trypsinogen and DNA analysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
111 Slovakia ∆F508 (57.3%) CFTRdele2,3 (1.2%) 82.7 68.4 14 908/254 CFGAC [1994]; Estivill et al. G542X (6.8%) 3849+10KbC→T (1.0%) [1997]; Dörk et al. [2000]; R553X (4.0%) S42F (0.9%) Macek et al. [2002] N1303K (3.4%) R75X (0.9%) 2143delT (1.8%) G85E (0.9%) R347P (1.4%) 605insT (0.9%) W1282X (1.3%) 1898+1G→A (0.9%) Slovenia ∆F508 (57.8%) R347P (1.1%) 79.7 63.5 16 455/132 CFGAC [1994]; Dörk et al. 2789+5G→A (4.1%) S4X (0.8%) [2000]; Macek et al. [2002] R1162X (3.2%) 457TAT→G (0.8%) G542X (1.9%) D192G (0.8%) Q552X (1.5%) R553X (0.8%) Q685X (1.5%) A559T (0.8%) 3905insT (1.5%) 2907delTT (0.8%) CFTRdele2,3 (1.5%) 3667ins4 (0.8%) Spain ∆F508 (52.7%) G85E (0.8%) 80.2 64.3 21 3608/1356 Chillón et al. [1994]; Casals et G542X (8.0%) R1066C (0.8%) al. [1997]; Estivill et al. [1997] N1303K (2.5%) 2789+5G→A (0.7%) 3601-111G→C (2.0%) 2869insG (0.7%) 1811+1.6Kb A→G (1.7%) ∆I507 (0.6%) R1162X (1.6%) W1282X (0.6%) 711+1G→T (1.3%) L206W (0.5%) R334W (1.2%) R709X (0.5%) Q890X (1.0%) K710X (0.5%) 1609delCA (1.0%) 3272-26A→G (0.5%) 712-1G→T (1.0%) Sweden ∆F508 (66.6%) E60X (0.6%) 85.9 73.8 10 1357/662 Schwartz et al. [1994]; Estivill et 394delTT (7.3%) Y109C (0.6%) al. [1997]; Schaedel et al. 3659delC (5.4%) R117H (0.6%) [1999] 175insT (2.4%) R117C (0.6%) T338I (1.2%) G542X (0.6%) Switzerland ∆F508 (57.2%) K1200E (2.1%) 91.3 83.4 9 1268/1173 Estivill et al. [1997]; R553X (14.0%) N1303K (1.2%) Hergersberg et al. [1997] 3905insT (9.8%) W1282X (1.1%) 1717-1G→A (2.7%) R347P (0.6%) G542X (2.6%) Ukraine ∆F508 (65.2%) CFTRdele2,3 (1.1%) 74.6 55.7 6 1055/580 Estivill et al. [1997]; Dörk et al. R553X (3.6%) G551D (1.8%) [2000]; Macek et al. [2002] N1303K (2.4%) W1282X (0.5%) United ∆F508 (75.3%) 621+1G→T (0.93%) 81.6 66.6 5 19622/9815 Schwartz et al. [1995b]; Kingdom G551D (3.1%) 1717-1G→A (0.57%) Estivill et al. [1997] (total) G542X (1.7%) TABLE 1. Continued. Estimated Projected detection of Number of Number of Country/ allele two CFTR mutations chromosomes Region Mutation array detectiona mutationsb includedc (max/min)d Reference WORLDWIDEANALYSISOFCFTRMUTATIONS585 United ∆F508 (56.6%) 621+1G→T (1.8%) 69.1 47.7 7 456 CFGAC [1994] Kingdom G551D (3.7%) R117H (1.5%) (N. Ireland) R560T (2.6%) ∆I507 (0.9%) G542X (2.0%) United ∆F508 (19.2%) 621+2T→C (3.8%) 84.4 71.2 11 52 Malone et al. [1998] Kingdom Y569D (15.4%) 2184insA (3.8%) (Pakistani) Q98X (11.5%) R560S (1.9%) 1525-1G→A (9.6%) 1898+1G→T (1.9%) 296+12T→C (7.7%) R709X (1.9%) 1161delC (7.7%) United ∆F508 (71.3%) 1717-1G→A (1.0%) 86.4 74.6 9 1236/730 Shrimpton et al. [1991]; Kingdom G551D (5.5%) 621+1G→T (0.6%) Gilfillan et al. [1998] (Scotland) G542X (4.0%) ∆I507 (0.6%) R117H (1.4%) R560T (0.6%) P67L (1.4%) United ∆F508 (71.6%) 1717-1G→A (1.1%) 98.7 97.4 17 183 Cheadle et al. [1993] Kingdom 621+1G→T (6.6%) 3659delC (0.5%) (Wales) 1898+1G→A (5.5%) R117H (0.5%) G542X (2.2%) N1303K (0.5%) G551D (2.2%) E60X (0.5%) 1078delT (2.2%) S549N (0.5%) R1283M (1.6%) 3849+10KbC→T (0.5%) R553X (1.1%) 4016insT (0.5%) ∆I507 (1.1%) Yugoslavia ∆F508 (68.9%) 3849G→A (1.0%) 82.2 67.6 11 709/398 Dabovic et al. [1992]; Estivill et G542X (4.0%) N1303K (0.8%) al. [1997]; Macek et al. R1162C (3.0%) 525delT (0.5%) (submitted for publication) 457TAT→G (1.0%) 621+1G→T (0.5%) I148T (1.0%) G551D (0.5%) Q552X (1.0%) Middle East/Africa Algeria 1) DF508 (20.0%) 4) 1812-1G®A (5.0%) - - 5 20 Loumi et al. [1999] 2) N1303K (20.0%) 5) V754M (5.0%) 3) 711+1G®T (10.0%) Jewish W1282X (48.0%) 3849+10KbC→T (6.0%) 95.0 90.3 6 261 Kerem et al. [1995] (Ashkenazi) ∆F508 (28.0%) N1303K (3.0%) G542X (9.0%) 1717-1G→A (1.0%) Jewish 1) N1303K - - 1 6 Kerem et al. [1995] (Egypt) Jewish 1) Q359K/T360K - - 1 8 Kerem et al. [1995] (Georgia) Jewish 1) DF508 2) 405+1G®A - - 2 11 Kerem et al. [1995] (Libya) Jewish 1) DF508 (72.0%) 3) D1152H (6.0%) - - 3 33 Kerem et al. [1995] (Morocco) 2) S549R (6.0%) Jewish ∆F508 (35.0%) W1282X (2.0%) 43.0 18.5 4 51 Shoshani et al. [1992] (Sepharadim) G542X (4.0%) S549I (2.0%) (Continued) BOBADILLAETAL.
X
ABCC7 p.Arg1162Cys 12007216:111:3439
status: NEW[hide] Functional Architecture of the Cytoplasmic Entranc... J Biol Chem. 2015 Jun 19;290(25):15855-65. doi: 10.1074/jbc.M115.656181. Epub 2015 May 5. El Hiani Y, Linsdell P
Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.
J Biol Chem. 2015 Jun 19;290(25):15855-65. doi: 10.1074/jbc.M115.656181. Epub 2015 May 5., [PMID:25944907]
Abstract [show]
As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm.
Comments [show]
None has been submitted yet.
No. Sentence Comment
111 Other mutants studied (K254C, K294C, R297C, K298C, H1085C, R1162C, and K1165C) were not significantly affected by either MTSES or MTSET (Fig. 3), suggesting that cysteine side chains at these positions were not modified by cytoplasmic MTS reagents.
X
ABCC7 p.Arg1162Cys 25944907:111:59
status: NEW