ABCC7 p.Pro111Ala
ClinVar: |
c.331C>G
,
p.Pro111Ala
?
, not provided
c.332C>T , p.Pro111Leu ? , not provided |
CF databases: |
c.332C>T
,
p.Pro111Leu
(CFTR1)
D
, As the DNA from his parents is not yet available, we are not ablt, at the present time, to ascertain that P111L is a variant or a possible mutation. It creates a BstNI restriction site (n=438 bp, m = 190 + 248 bp), or destroys a MspI site (n = 191 + 247, m = 438 bp).
c.331C>G , p.Pro111Ala (CFTR1) D , The mutation was identified by DGGE and direct DNA sequencing in a CBAVD patient. He has a stop mutation R553X on the other allele. |
Predicted by SNAP2: | A: D (53%), C: D (71%), D: D (85%), E: D (80%), F: D (80%), G: D (66%), H: D (80%), I: D (80%), K: D (85%), L: N (53%), M: D (80%), N: D (59%), Q: D (75%), R: D (71%), S: D (59%), T: D (71%), V: D (80%), W: D (85%), Y: D (80%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: D, H: D, I: D, K: N, L: D, M: D, N: N, Q: N, R: N, S: N, T: N, V: N, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Disease-associated mutations in the extracytoplasm... J Biol Chem. 2001 May 4;276(18):14848-54. Epub 2001 Feb 6. Hammerle MM, Aleksandrov AA, Riordan JR
Disease-associated mutations in the extracytoplasmic loops of cystic fibrosis transmembrane conductance regulator do not impede biosynthetic processing but impair chloride channel stability.
J Biol Chem. 2001 May 4;276(18):14848-54. Epub 2001 Feb 6., 2001-05-04 [PMID:11278813]
Abstract [show]
Consistent with its function as a chloride channel regulated entirely from the cytoplasmic side of the plasma membrane, the cystic fibrosis transmembrane conductance regulator (CFTR) glycoprotein exposes little of its mass on the exterior surface of cells. The first and fourth extracytoplasmic loops (ELs) contain approximately 15 and 30 residues, respectively; the other four ELs are extremely short. To examine the influence of missense mutants in ELs detected in patients with cystic fibrosis, we have expressed them in mammalian (baby hamster kidney (BHK21)) cells and assessed their biosynthetic processing and chloride channel activity. In contrast to previous findings that 18 of 30 disease-associated missense mutations in cytoplasmic loops caused retention of the nascent polypeptides in the endoplasmic reticulum, all the EL mutants studied matured and were transported to the cell surface. This pronounced asymmetry is consistent with the notion that endoplasmic reticulum quality control of nascent CFTR is exerted primarily on the cytoplasmic side of the membrane. Although this set of EL mutations has little effect on CFTR maturation, most of them seriously compromise its chloride channel activity. Substitutions at six different positions in EL1 and single positions in EL2 and EL4 all destabilized the open state, some of them severely, indicating that the ELs contribute to the stability of the CFTR ion pore.
Comments [show]
None has been submitted yet.
No. Sentence Comment
75 TABLE I Oligonucleotide primers used to generate mutations Mutation Primer S108F GGAAGAATCATAGCTTtCTATGACCCGGATAAC Y109C AGAATCATAGCTTCCTgTGACCCGGATAACAAG D110H ATCATAGCTTCCTATcACCCGGATAACAAGGAG P111A ATAGCTTCCTATGACgCGGATAACAAGGAGGAA P111L ATAGCTTCCTATGACCtGGATAACAAGGAGGAA E116K CCGGATAACAAGGAGaAACGCTCTATCGCGATT R117C GATAACAAGGAGGAAtGCTCTATCGCGATTTAT R117H GATAACAAGGAGGAACaCTCTATCGCGATTTAT R117L GATAACAAGGAGGAACtCTCTATCGCGATTTAT R117P GATAACAAGGAGGAACcCTCTATCGCGATTTAT E217G ATGGGGCTAATCTGGGgGTTGTTACAGGCGTCT T908N TATGCAGTGATTATCAaCAGCACCAGTTCGTAT P1013L GTCGCAGTTTTACAACtCTACATCTTTGTTGCA FIG. 2.
X
ABCC7 p.Pro111Ala 11278813:75:195
status: NEW118 B, squares, P111A; circles, P111L; triangles, E116K.
X
ABCC7 p.Pro111Ala 11278813:118:12
status: NEW134 Substitution of the proline with the smaller aliphatic alanine residue (P111A) produced a channel with much more rapid kinetics and a reduced conductance of 9.2 pS even at 21 °C (Fig. 4).
X
ABCC7 p.Pro111Ala 11278813:134:72
status: NEW171 For example a nucleotide binding domain mutation, G551D, precludes virtually all TABLE II Relative charge transport capacity of mutants Mutants S108F Y109C D110H P111L P111A E116K R117H R117C R117L R117P E217G T908N P1013L Imutant/Iwt 100% 11 15 27 173 105 12 80 27 5 11 10 48 170 FIG. 5.
X
ABCC7 p.Pro111Ala 11278813:171:168
status: NEW[hide] Do common in silico tools predict the clinical con... Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6. Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K, Yuan XW, Corey M, Tsui LC, Zielenski J, Durie P
Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene?
Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6., [PMID:20059485]
Abstract [show]
Computational methods are used to predict the molecular consequences of amino-acid substitutions on the basis of evolutionary conservation or protein structure, but their utility in clinical diagnosis or prediction of disease outcome has not been well validated. We evaluated three popular computer programs, namely, PANTHER, SIFT and PolyPhen, by comparing the predicted clinical outcomes for a group of known CFTR missense mutations against the diagnosis of cystic fibrosis (CF) and clinical manifestations in cohorts of subjects with CF-disease and CFTR-related disorders carrying these mutations. Owing to poor specificity, none of tools reliably distinguished between individual mutations that confer CF disease from mutations found in subjects with a CFTR-related disorder or no disease. Prediction scores for CFTR mutations derived from PANTHER showed a significant overall statistical correlation with the spectrum of disease severity associated with mutations in the CFTR gene. In contrast, PolyPhen- and SIFT-derived scores only showed significant differences between CF-causing and non-CF variants. Current computational methods are not recommended for establishing or excluding a CF diagnosis, notably as a newborn screening strategy or in patients with equivocal test results.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 Mutations in the CFTR gene grouped by clinical category Cystic fibrosis CFTR-related disease No disease T338I D614G L320V V920L L90S M470V H199R S1251N I203M G550R P111A I148T Q1291H R560K L1388Q L183I R170H I1027T S549R D443Y P499A L1414S T908N R668C S549N A455E E1401K Q151K G27E I1234L Y563N R347P C866R S1118C P1290S R75Q A559T V520F P841R M469V E1401G P67L G85E S50Y E1409K R933G G458V G178R Y1032C R248T I980K G85V V392G L973P L137H T351S R334W I444S V938G R792G R560T R555G L1339F D1305E P574H V1240G T1053I D58G G551D L1335P I918M F994C S945L L558S F1337V R810G D1152H G1247R P574S R766M D579G W1098R H949R F200I R352Q L1077P K1351E M244K L206W M1101K D1154G L375F N1303K R1066C E528D D110Y R347H R1070Q A800G P1021S S549K A1364V V392A damaging` (is supposed to affect protein function or structure) and 'probably damaging` (high confidence of affecting protein function or structure).
X
ABCC7 p.Pro111Ala 20059485:64:164
status: NEW[hide] Three charged amino acids in extracellular loop 1 ... J Gen Physiol. 2014 Aug;144(2):159-79. doi: 10.1085/jgp.201311122. Epub 2014 Jul 14. Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA
Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR.
J Gen Physiol. 2014 Aug;144(2):159-79. doi: 10.1085/jgp.201311122. Epub 2014 Jul 14., [PMID:25024266]
Abstract [show]
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1-6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oocytes combined with electrophysiological techniques to test this hypothesis. Mutants bearing cysteine at these sites were not functionally modified by extracellular MTS reagents and were blocked by GlyH-101 similarly to WT-CFTR. These results suggest that these three residues do not contribute directly to permeation in CFTR. In contrast, mutants D110R-, E116R-, and R117A-CFTR exhibited instability of the open state and significantly shortened burst duration compared with WT-CFTR and failed to be locked into the open state by AMP-PNP (adenosine 5'-(beta,gamma-imido) triphosphate); charge-retaining mutants showed mainly the full open state with comparably longer open burst duration. These interactions suggest that these ECL1 residues might be involved in maintaining the outer pore architecture of CFTR. A CFTR homology model suggested that E116 interacts with R104 in both the closed and open states, D110 interacts with K892 in the fully closed state, and R117 interacts with E1126 in the open state. These interactions were confirmed experimentally. The results suggest that D110, E116, and R117 may contribute to stabilizing the architecture of the outer pore of CFTR by interactions with other charged residues.
Comments [show]
None has been submitted yet.
No. Sentence Comment
36 CF-causing mutations have been identified in ECL1, including S108F, Y109C/N, D110H/ Y/N,P111A/L,E116K/Q,andR117C/G/H/P/L.Among these residues, D110, E116, and R117 are charged amino acids fully conserved among nine species (Fig. 1 A).
X
ABCC7 p.Pro111Ala 25024266:36:88
status: NEW