ABCC7 p.Ala349Val
ClinVar: |
c.1046C>T
,
p.Ala349Val
D
, Pathogenic
|
CF databases: |
c.1046C>T
,
p.Ala349Val
(CFTR1)
?
, A nucleotide, C->T at position 1178, was detected by DGGE and direct sequencign leading to A 349V in exon 7.
|
Predicted by SNAP2: | C: D (66%), D: D (85%), E: D (85%), F: D (85%), G: D (75%), H: D (80%), I: D (80%), K: D (85%), L: D (85%), M: D (80%), N: D (75%), P: D (85%), Q: D (80%), R: D (75%), S: N (66%), T: N (78%), V: N (61%), W: D (85%), Y: D (85%), |
Predicted by PROVEAN: | C: N, D: N, E: N, F: N, G: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Prevalence of CFTR mutations in hypertrypsinaemia ... Clin Genet. 2001 Jan;59(1):42-7. Scotet V, De Braekeleer M, Audrezet MP, Lode L, Verlingue C, Quere I, Mercier B, Dugueperoux I, Codet JP, Moineau MP, Parent P, Ferec C
Prevalence of CFTR mutations in hypertrypsinaemia detected through neonatal screening for cystic fibrosis.
Clin Genet. 2001 Jan;59(1):42-7., [PMID:11168024]
Abstract [show]
Nowadays, most of the neonatal screening programs for cystic fibrosis (CF) combine the assay of immunoreactive trypsinogen (IRT) with the analysis of the most common mutations of the CFTR gene. The efficiency of this strategy is now well established, but the identification of heterozygotes among neonates with increased IRT is perceived as a drawback. We proposed to assess the heterozygosity frequency among the children with hypertrypsinaemia detected through the CF screening program implemented in Brittany (France) 10 years ago, to describe the CFTR mutations detected in them and to determine the frequency of the IVS8-5T variant. The molecular analysis relies, in our protocol, on the systematic analysis of three exons of the gene (7-10-11). A total of 160,019 babies were screened for CF in western Brittany between 1992 and 1998. Of the 1964 newborns with increased IRT (1.2%), 60 were CF and 213 were carriers. Heterozygosity frequency was 12.8%), i.e. 3 times greater than in the general population (3.9%; p < 10(-6)), Variability of mutations detected in carriers was greater than in CF children (21 mutations versus 10) and a high proportion of mild mutations or variants (A349V, R297Q, R347H, V317A, G544S, R553G, etc) was observed in carriers. The allelic frequency of the 5T (5.6%) was not significantly increased in this cohort. This study is consistent with previous ones in finding a significantly higher rate of heterozygotes than expected among neonates with hypertrypsinaemia. The strategy of screening used here allows to highlight the variability of mutations detected in heterozygotes and to show that severe mutations, as well as mild mutations, have been observed in neonates with hypertrypsinaemia. If there is no doubt that neonatal hypertrypsinaemia is associated with an elevated frequency of carriers, the underlying mechanisms remain obscure.
Comments [show]
None has been submitted yet.
No. Sentence Comment
11 Variability of mutations detected in carriers was greater than in CF children (21 mutations versus 10) and a high proportion of mild mutations or variants (A349V, R297Q, R347H, V317A, G544S, R553G, etc) was observed in carriers.
X
ABCC7 p.Ala349Val 11168024:11:156
status: NEW74 We noted, among heterozygous children, a high proportion of mild mutations (R297Q, R347H, M348K, A349V, G544S) or for which the pathogenicity is yet impossible to determine (V317A, V322A, R553G).
X
ABCC7 p.Ala349Val 11168024:74:97
status: NEW[hide] DHPLC screening of cystic fibrosis gene mutations. Hum Mutat. 2002 Apr;19(4):374-83. Ravnik-Glavac M, Atkinson A, Glavac D, Dean M
DHPLC screening of cystic fibrosis gene mutations.
Hum Mutat. 2002 Apr;19(4):374-83., [PMID:11933191]
Abstract [show]
Denaturing high performance liquid chromatography (DHPLC) using ion-pairing reverse phase chromatography (IPRPC) columns is a technique for the screening of gene mutations. In order to evaluate the potential utility of this assay method in a clinical laboratory setting, we subjected the PCR products of 73 CF patients known to bear CFTR mutations to this analytic technique. We used thermal denaturation profile parameters specified by the MELT program tool, made available by Stanford University. Using this strategy, we determined an initial analytic sensitivity of 90.4% for any of 73 known CFTR mutations. Most of the mutations not detected by DHPLC under these conditions are alpha-substitutions. This information may eventually help to improve the MELT algorithm. Increasing column denaturation temperatures for one or two degrees above those recommended by the MELT program allowed 100% detection of CFTR mutations tested. By comparing DHPLC methodology used in this study with the recently reported study based on Wavemaker 3.4.4 software (Transgenomic, Omaha, NE) [Le Marechal et al., 2001) and with previous SSCP analysis of CFTR mutations [Ravnik-Glavac et al., 1994] we emphasized differences and similarities in order to refine the DHPLC system and discuss the relationship to the alternative approaches. We conclude that the DHPLC method, under optimized conditions, is highly accurate, rapid, and efficient in detecting mutations in the CFTR gene and may find high utility in screening individuals for CFTR mutations. Hum Mutat 19:374-383, 2002. Published 2002 Wiley-Liss, Inc.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 The following mutations have been studied: exon 3: W57G, R74W, R75Q, G85E, 394delTT, 405+ 1G>A; exon 4: E92X, P99L, 441delA, 444delA, 457TAT>G, D110H, R117C, R117H, A120T, 541delC, 544delCA, Q151X, 621+1G>T, 662- 2A>C; exon 7: 1078delT, F331L, R334W, I336K, R347C, R347P, A349V, R352Q, 1221delCT; exon 10: S492F, Q493X, 1609delCA, deltaI507, deltaF508; exon 11: G542X, S549N, G551D, R553X, A559T, R560K, R560T; exon 13: K716X, Q685X, G628R, L719X; exon 17b: H1054D, G1061R, 3320ins5, R1066H, R1066L, R1070Q, 3359delCT, L1077P, H1085R, Y1092X; exon 19: R1162X, 3659delC, 3662delA, 3667del4, 3737delA, I1234V, S1235R, 3849G>A; exon 20: 3860ins31,S1255X,3898insC,3905insT,D1270N, W1282X, Q1291R; and exon 21: N1303H, N1303K, W1316X.
X
ABCC7 p.Ala349Val 11933191:42:272
status: NEW[hide] Mutations of the CFTR gene in Turkish patients wit... Hum Reprod. 2004 May;19(5):1094-100. Epub 2004 Apr 7. Dayangac D, Erdem H, Yilmaz E, Sahin A, Sohn C, Ozguc M, Dork T
Mutations of the CFTR gene in Turkish patients with congenital bilateral absence of the vas deferens.
Hum Reprod. 2004 May;19(5):1094-100. Epub 2004 Apr 7., [PMID:15070876]
Abstract [show]
BACKGROUND: Mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) can cause congenital bilateral absence of the vas deferens (CBAVD) as a primarily genital form of cystic fibrosis. The spectrum and frequency of CFTR mutations in Turkish males with CBAVD is largely unknown. METHODS: We investigated 51 Turkish males who had been diagnosed with CBAVD at the Hacettepe University, Ankara, for the presence of CFTR gene mutations by direct sequencing of the coding region and exon/intron boundaries. RESULTS: We identified 27 different mutations on 72.5% of the investigated alleles. Two-thirds of the patients harboured CFTR gene mutations on both chromosomes. Two predominant mutations, IVS8-5T and D1152H, accounted for more than one-third of the alleles. Five mutations are described for the first time. With one exception, all identified patients harboured at least one mutation of the missense or splicing type. Presently available mutation panels would have uncovered only 7-12% of CFTR alleles in this population cohort. CONCLUSIONS: Although cystic fibrosis is relatively rare in Turkey, CFTR mutations are responsible for the majority of CBAVD in Turkish males. Because of a specific mutation profile, a population-specific panel should be recommended for targeted populations such as CBAVD in Turkey or elsewhere.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 2 (2.0)a This study R74W Exon 3 C®T at 352 Amino acid substitution 1 (1.0) Claustres et al. 1993b 359insT Exon 3 Insertion of T within 360±365 Truncation 1 (1.0) Claustres et al. 1995* A349V Exon 7 C®T at 1178 Amino acid substitution 1 (1.0) Audrezet et al. 1993 R334Q Exon 7 G®A at 1133 Amino acid substitution 1 (1.0) Ferec et al. 1994* T388M Exon 8 C®T at 1295 Amino acid substitution 1 (1.0) Zielenski et al. 1996 IVS8-6T Intron 8 Deletion of T between 1342±12 and 1342±6 Aberrant splicing?
X
ABCC7 p.Ala349Val 15070876:42:195
status: NEW72 CFTR genotypes in 51 patients with congenital bilateral absence of the vas deferens Mutation genotypes IVS8-(TG)mTn M470V n (%) Two mutations detected: D1152H/D1152H (TG)11 7T/ (TG)11 7T V/V 5 (9.8) IVS8-5T/IVS8-5T (TG)13 5T/ (TG)13 5T M/M 2 (3.9) (TG)12 5T/ (TG)13 5T M/V 1 (1.9) (TG)12 5T/ (TG)12 5T V/V 1 (1.9) IVS8-5T/D1152H (TG)12 5T/ (TG)11 7T V/V 2 (3.9) IVS8-5T/DF508 (TG)12 5T/ (TG)10 9T M/V 2 (3.9) IVS8-5T/2789+5G®A (TG)12 5T/ (TG)10 7T M/V 2 (3.9) IVS8-5T/365insT (TG)13 5T/ (TG)11 7T M/V 1 (1.9) IVS8-5T/D110H (TG)12 5T/ (TG)11 7T M/V 1 (1.9) IVS8-5T/E585X (TG)12 5T/ (TG)10 7T M/V 1 (1.9) IVS8-5T/2752-15C®G (TG)12 5T/ (TG)11 7T V/V 1 (1.9) IVS8-5T/M952I (TG)12 5T/ (TG)10 7T M/V 1 (1.9) IVS8-5T/3120+1G®A (TG)12 5T/ (TG)11 7T V/V 1 (1.9) D1152H/A349V (TG)10 7T/ (TG)11 7T M/V 1 (1.9) D1152H/2789+5G®A (TG)10 7T/ (TG)11 7T M/V 1 (1.9) D1152H/G1130A (TG)10 7T/ (TG)11 7T M/V 1 (1.9) CFTRdele2(ins186)/ IVS8-6T (TG)13 6T/ (TG)11 7T M/V 1 (1.9) CFTRdele2(ins186)/D110H (TG)11 7T/ (TG)11 7T V/V 1 (1.9) E831X/D110H (TG)11 7T/ (TG)11 7T V/V 1 (1.9) E831X/1677delTA (TG)11 7T/ (TG)11 7T V/V 1 (1.9) R334Q/R347H (TG)11 7T/ (TG)11 7T V/V 1 (1.9) 1767del6/1767del6 (TG)11 7T/ (TG)11 7T V/V 1 (1.9) 3041-15T®G/3041-15T®G (TG)12 7T/ (TG)12 7T M/M 1 (1.9) 3041-13del7/3041-13del7 (TG)10 7T/ (TG)10 7T M/M 1 (1.9) R1070W/3272-26A®G (TG)10 7T/ (TG)11 7T M/V 1 (1.9) I853F/L997F (TG)11 7T/ (TG)10 9T V/V 1 (1.9) One mutation detected: L997F/?
X
ABCC7 p.Ala349Val 15070876:72:775
status: NEW[hide] Comprehensive cystic fibrosis mutation epidemiolog... Ann Hum Genet. 2005 Jan;69(Pt 1):15-24. Castaldo G, Polizzi A, Tomaiuolo R, Cazeneuve C, Girodon E, Santostasi T, Salvatore D, Raia V, Rigillo N, Goossens M, Salvatore F
Comprehensive cystic fibrosis mutation epidemiology and haplotype characterization in a southern Italian population.
Ann Hum Genet. 2005 Jan;69(Pt 1):15-24., [PMID:15638824]
Abstract [show]
We screened the whole coding region of the cystic fibrosis transmembrane regulator (CFTR) gene in 371 unrelated cystic fibrosis (CF) patients from three regions of southern Italy. Forty-three mutations detected 91.5% of CF mutated chromosomes by denaturing gradient gel electrophoresis analysis, and three intragenic CFTR polymorphisms predicted a myriad of rare mutations in uncharacterized CF chromosomes. Twelve mutations are peculiar to CF chromosomes from southern Italy: R1158X, 4016insT, L1065P and 711 + 1G > T are present in 6.3% of CF chromosomes in Campania; G1244E and 852del22 are present in 9.6% of CF chromosomes in Basilicata and 4382delA, 1259insA, I502T, 852del22, 4016insT, D579G, R1158X, L1077P and G1349D are frequent in Puglia (19.6% of CF alleles). Several mutations frequently found in northern Italy (e.g., R1162X, 711 + 5G > T) and northern Europe (e.g., G551D, I507del and 621 + 1G > T) are absent from the studied population. The I148T-3195del6 complex allele was present in two CF chromosomes, whereas I148T was present in both alleles (as a single mutation) in another CF patient and in five CF carriers; this could result from crossover events. The haplotype analysis of three intragenic polymorphisms (IVS8CA, IVS17bTA and IVS17bCA) compared with data from other studies revealed that several mutations (3849 + 10kbC > T, 1717-1G > A, E585X, 3272-26G > A, L558S, 2184insA and R347P) originated from multiple events, whereas others (R1158X and S549R) could be associated with one or more intragenic recombinant events. Given the large population migration from southern Italy, knowledge of the CF molecular epidemiology in this area is an important contribution to diagnosis, counselling and interlaboratory quality control for molecular laboratories worldwide.
Comments [show]
None has been submitted yet.
No. Sentence Comment
62 A procedure for the large-scale analysis of several mutations peculiar to southern Italy is also indicated Mutation Analytical CF alleles Campania Basilicata Puglia Total procedure n = 340 n = 52 n = 350 n = 742 DF508 55.6 55.8 46.8 51.5 N1303K 7.3 3.8 7.7 7.3 G542X 5.0 3.8 7.1 5.9 W1282X 3.5 3.8 0.6 2.2 2183 AA>G 2.3 5.8 0.8 1.9 852del22 0 5.8 3.2 1.9 3% agarose 1717-1G>A 2.3 1.9 1.1 1.8 4382delA 0 0 3.7 1.8 RE (Ear I -) 1259insA 0 0 3.1 1.5 4016insT 2.1 0 1.1 1.5 ASO R553X 1.5 0 1.7 1.5 R1158X 1.5 0 1.3 1.2 ASO or RE (Sfa N 1 -) L1077P 0.6 0 1.9 1.2 I502T 0.3 0 2.0 1.1 RE (Mse I -) 3849+10kbC>T 0 1.9 1.6 0.9 D579G 0 0 1.6 0.8 RE (Avr II +) G1244E 0.9 3.8 0.3 0.8 ASO or RE (Mbo II +) G1349D 0 0 1.7 0.8 RE (Sty I -) 2789+5 G>A 0.6 0 0.8 0.7 711+1 G>T 1.5 0 0 0.7 ASO L1065P 1.2 0 0 0.5 ASO or RE (Mnl I +) R347P 0.3 0 0.9 0.5 2522insC 0.9 0 0 0.4 E585X 0.6 0 0 0.3 G85E 0.6 0 0 0.3 G178R 0.6 0 0 0.3 D1152H 0.3 0 0.3 0.3 I148T-3195del6 0.6 0 0 0.3 I148T (alone) 0 0 0.3 0.1 R334W 0 0 0.3 0.1 DI507 0 0 0.3 0.1 I1005R 0 0 0.3 0.1 3272-26A>G 0.3 0 0 0.1 2711delT 0.3 0 0 0.1 L558S 0 1.9 0 0.1 W1063X 0 0 0.3 0.1 D110H 0.3 0 0 0.1 S549R (A>C) 0 1.9 0 0.1 2184insA 0.3 0 0 0.1 3131del22 0.3 0 0 0.1 R709N 0 0 0.3 0.1 A349V 0 0 0.3 0.1 4015insA 0 0 0.3 0.1 Y849X 0 1.9 0 0.1 Cumulative 91.6 92.1 91.7 91.5 Unknown 8.4 7.9 8.3 8.5 Total 100,0 100,0 100,0 100,0 RE: restriction enzyme (-/+: abolition or introduction of a RE site); ASO: allele specific oligonucleotide Figure 2 Multiplex denaturing gradient gel electrophoretic analysis of exons 8, 5 and 18 of the cystic fibrosis transmembrane regulator gene in a cystic fibrosis patient (case n.
X
ABCC7 p.Ala349Val 15638824:62:1223
status: NEW[hide] Identification of CFTR, PRSS1, and SPINK1 mutation... Pancreas. 2006 Oct;33(3):221-7. Keiles S, Kammesheidt A
Identification of CFTR, PRSS1, and SPINK1 mutations in 381 patients with pancreatitis.
Pancreas. 2006 Oct;33(3):221-7., [PMID:17003641]
Abstract [show]
OBJECTIVES: Chronic pancreatitis is a progressive inflammatory disorder leading to irreversible exocrine and/or endocrine impairment. It is well documented that mutations in the cationic trypsinogen (PRSS1) gene can cause hereditary pancreatitis. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) and the serine protease inhibitor Kazal type 1 (SPINK1) genes are also associated with pancreatitis. METHODS: We analyzed 381 patients with a primary diagnosis of chronic or recurrent pancreatitis using the Ambry Test: Pancreatitis to obtain comprehensive genetic information for the CFTR, SPINK1, and PRSS1 genes. RESULTS: The results identified 32% (122/381) of patients with 166 mutant CFTR alleles, including 12 novel CFTR variants: 4375-20 A>G, F575Y, K598E, L1260P, G194R, F834L, S573C, 2789 + 17 C>T, 621+83 A>G, T164S, 621+25 A>G, and 3500-19 G>A. Of 122 patients with CFTR mutations, 5.5% (21/381) also carried a SPINK1 mutation, and 1.8% (7/381) carried a PRSS1 mutation. In addition, 8.9% (34/381) of all patients had 1 of 11 different SPINK1 mutations. Another 6.3% (24/381) of the patients had 1 of 8 different PRSS1 mutations. Moreover, 1.3% of the patients (5/381) had 1 PRSS1 and 1 SPINK1 mutation. A total 49% (185/381) of the patients carried one or more mutations. CONCLUSIONS: Comprehensive testing of the CFTR, PRSS1, and SPINK1 genes identified genetic variants in nearly half of all subjects considered by their physicians as candidates for genetic testing. Comprehensive test identified numerous novel variants that would not be identified by standard clinical screening panels.
Comments [show]
None has been submitted yet.
No. Sentence Comment
71 Patients With 1 CFTR Mutation CFTR Mutation 1 No. of Patients 1717-1 G9A 1 2789+5 G9A 1 3849+10kb C9T 2 3849+45 G9A 1 621+3 A9G 2 A1364V 1 A349V 1 A455E 1 D1152H 1 D1445N 1 deltaF508 16 E217G 1 F1286C 1 F316L 1 G542X 1 G551D 1 I148T 1 I807M 1 L206W 1 L967S 2 L997F 2 P55S 1 Q179K 1 Q220X 1 R117H 3 R1453W 1 R297Q 1 R31C 1 R668C 2 S1235R 1 S573C 1 S945L 1 V562A 1 V754M 2 Y1092X 1 Total patients 58 MutationsinboldfacewouldnothavebeendetectedbytheACOG/ACMGmutationpanel.
X
ABCC7 p.Ala349Val 17003641:71:139
status: NEW[hide] A 10-year large-scale cystic fibrosis carrier scre... J Cyst Fibros. 2010 Jan;9(1):29-35. Epub 2009 Nov 7. Picci L, Cameran M, Marangon O, Marzenta D, Ferrari S, Frigo AC, Scarpa M
A 10-year large-scale cystic fibrosis carrier screening in the Italian population.
J Cyst Fibros. 2010 Jan;9(1):29-35. Epub 2009 Nov 7., [PMID:19897426]
Abstract [show]
BACKGROUND: Cystic Fibrosis (CF) is one of the most common autosomal recessive genetic disorders, with the majority of patients born to couples unaware of their carrier status. Carrier screenings might help reducing the incidence of CF. METHODS: We used a semi-automated reverse-dot blot assay identifying the 47 most common CFTR gene mutations followed by DGGE/dHPLC analysis. RESULTS: Results of a 10-year (1996-2006) CF carrier screening on 57,999 individuals with no prior family history of CF are reported. Of these, 25,104 were couples and 7791 singles, with 77.9% from the Italian Veneto region. CFTR mutations were found in 1879 carriers (frequency 1/31), with DeltaF508 being the most common (42.6%). Subjects undergoing medically assisted reproduction (MAR) had significantly (p<0.0001) higher CF carrier frequency (1/22 vs 1/32) compared to non-MAR subjects. CONCLUSIONS: If coupled to counselling programmes, CF carrier screening tests might help reducing the CF incidence.
Comments [show]
None has been submitted yet.
No. Sentence Comment
131 Aminoacid change Nucleotide change A349V 1178C→T D372E 1251T→G D674V 2153A→T D806G 2549A→G I586V 1888A→G I807V 2551A→G I840T 2651T→C L1335F 4135C→T L1414S 4373T→C L1480P 4571T→C M348T 1175T→C N416S 1379A→G P1290T 4000C→T P355S 1195C→T Q1268R 3935A→G Q1352E 4186C→G S431G 2423A→G S660T 2110T→A S911R 2865T→G T1263A 3919A→G T788I 2495C→T V920L 2890G→T Y1381H 4273T→C Y84H 382T→C two CFTR mutations and who had not been previously diagnosed with CF [29].
X
ABCC7 p.Ala349Val 19897426:131:35
status: NEW[hide] Association of cystic fibrosis genetic modifiers w... Fertil Steril. 2010 Nov;94(6):2122-7. Epub 2010 Jan 25. Havasi V, Rowe SM, Kolettis PN, Dayangac D, Sahin A, Grangeia A, Carvalho F, Barros A, Sousa M, Bassas L, Casals T, Sorscher EJ
Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens.
Fertil Steril. 2010 Nov;94(6):2122-7. Epub 2010 Jan 25., [PMID:20100616]
Abstract [show]
OBJECTIVE: To investigate whether genetic modifiers of cystic fibrosis (CF) lung disease also predispose to congenital bilateral absence of the vas deferens (CBAVD) in association with cystic fibrosis transmembrane conductance regulator (CFTR) mutations. We tested the hypothesis that polymorphisms of transforming growth factor (TGF)-beta1 (rs 1982073, rs 1800471) and endothelin receptor type A (EDNRA) (rs 5335, rs 1801708) are associated with the CBAVD phenotype. DESIGN: Genotyping of subjects with clinical CBAVD. SETTING: Outpatient and hospital-based clinical evaluation. PATIENT(S): DNA samples from 80 subjects with CBAVD and 51 healthy male controls from various regions of Europe. This is one of the largest genetic studies of this disease to date. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Genotype analysis. RESULT(S): For single nucleotide polymorphism (SNP) rs 5335, we found increased frequency of the CC genotype among subjects with CBAVD. The difference was significant among Turkish patients versus controls (45.2% vs. 19.4%), and between all cases versus controls (36% vs. 15.7%). No associations between CBAVD penetrance and polymorphisms rs 1982073, rs 1800471, or rs 1801708 were observed. CONCLUSION(S): Our findings indicate that endothelin receptor type A polymorphism rs 5335 may be associated with CBAVD penetrance. To our knowledge, this is the first study to investigate genetic modifiers relevant to CBAVD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
68 Portuguese CFTR alleles Spanish CFTR alleles Turkish CFTR alleles 5T 22 F508del 11 5T 20 F508del 14 5T 9 D1152H 14 R334W 5 D443Ya 3 D110H 3 R117H 3 G576Aa 3 F508del 2 S1235R 3 R668Ca 3 3041-11del7 2 N1303K 2 G542X 2 1767del6 2 P205S 2 R117H 2 2789þ5G>A 2 D614G 2 V232D 2 CFTRdele2(ins186) 2 G542X 1 L997F 1 3120þ1G>A 1 L206W 1 H609R 1 G1130A 1 V562I 1 N1303H 1 M952I 1 I507del 1 L206W 1 365insT 1 3272-26A>G 1 3272-26A/G 1 E585X 1 2789þ5G>A 1 L15P 1 2752-15C>G 1 G576Aa 1 R347H 1 R334Q 1 R668Ca 1 2689insG 1 R347H 1 CFTRdele2,3 1 R1070W 1 E831X 1 L1227S 1 I 1027T 1 R1070W 1 E831X 1 3272-26A>G 1 L997F 1 I853F 1 A349V 1 6T 1 Note: CFTR ¼ cystic fibrosis transmembrane conductance regulator.
X
ABCC7 p.Ala349Val 20100616:68:627
status: NEW[hide] Genetic prevalence and characteristics in children... J Pediatr Gastroenterol Nutr. 2012 May;54(5):645-50. Sultan M, Werlin S, Venkatasubramani N
Genetic prevalence and characteristics in children with recurrent pancreatitis.
J Pediatr Gastroenterol Nutr. 2012 May;54(5):645-50., [PMID:22094894]
Abstract [show]
AIMS: The causes of chronic (CP) and recurrent acute pancreatitis (RAP) in children include anatomic abnormalities and hereditary, metabolic, and autoimmune disorders, with a significant proportion of cases being labeled as idiopathic. Genetic pancreatitis (GP) is associated with mutations of cystic fibrosis transmembrane conductor regulator gene (CFTR), cationic trypsinogen (PRSS1) gene, and serine protease inhibitor Kazal type 1 (SPINK1). There literature is sparse regarding the clinical profile of GP in children. The aim of the present study was to estimate the prevalence and describe the clinical characteristics and outcome of genetic pancreatitis. METHODS: We reviewed the charts of children ages 18 years or younger with RAP or CP diagnosed from 2000 to 2009 at the Children's Hospital of Wisconsin, Milwaukee. Twenty-nine patients with RAP or CP were identified, of whom 23 (79%) were positive for mutations in >/=1 of the above-mentioned genes, and were included for review. RESULTS: The median age of symptom onset was 5 years (range 9 months-15 years) with diagnosis at 6.5 years (range 1-16 years). Twenty-one were white; 14 were girls. The most common presenting symptoms were abdominal pain and vomiting. Patients with RAP had 2 to 8 episodes of pancreatitis during 3.6-year average follow-up. Family history was positive in 5 of 29 of gene-tested patients. CFTR, SPINK1, or PRSS1 mutations were seen in 14 (48%), 8 (27%), and 7 (24%) patients, respectively. Two patients were homozygous for CFTR mutations, 6 heterozygote and 4 patients had 5 T variants. Two other patients had double heterozygous mutations in F508 del/2789 + 5G > A and F508 del/5T variant. Six patients with CP had a combination of CFTR and SPINK1 or PRSS1 mutations. Eleven of 29 (38%) patients met radiological criteria for CP. All of the heterozygote patients with a combination of CFTR and SPINK1 or PRSS1 mutations had CP. Eight patients developed a chronic pain syndrome and 2 developed exocrine pancreatic insufficiency during follow-up. CONCLUSIONS: We found a high prevalence of genetic mutations in patients without anatomic or metabolic abnormalities known to be associated with pancreatitis. Studies are needed to ascertain the genetic causes of RAP and CP and examine the relation between single CFTR mutations and single mutations in the PRSS1 and SPINK1 genes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
135 Another patient was double heterozygous for R533X/A349V, and both of these mutations are reported in patients with CF.
X
ABCC7 p.Ala349Val 22094894:135:50
status: NEW145 CFTR mutations and functional consequences CFTR mutations Clinical significance (reference) F508 del Cystic fibrosis (21) 2789 þ 5G>A Cystic fibrosis (21) 5T CFTR-related disorder (pancreatitis, obstructive azoospermia) (21) R533X Cystic fibrosis (22) A349V Unknown clinical significance (26) p.L997F Unknown clinical significance (21), possible CFTR-related disorder (pancreatitis) (7) R297Q Unknown clinical significance (21) D1152H Cystic fibrosis and CFTR-related disorder (21) I 148T Cystic fibrosis (27) CFTR ¼ cystic fibrosis transmembrane conductor regulator.
X
ABCC7 p.Ala349Val 22094894:145:257
status: NEW[hide] A comparison of fluorescent SSCP and denaturing HP... Hum Mutat. 2000;15(6):556-64. Ellis LA, Taylor CF, Taylor GR
A comparison of fluorescent SSCP and denaturing HPLC for high throughput mutation scanning.
Hum Mutat. 2000;15(6):556-64., [PMID:10862085]
Abstract [show]
We examined 67 different mutations in 16 different amplicons in a comparison of mutation detection by fluorescent single strand conformation polymorphism (F-SSCP) and by denaturing HPLC (DHPLC). F-SSCP was used to analyze fluorescent amplicons with internal size standards and automated fragment analysis (GeneScan, PE Applied Biosystems, Foster City, CA). In DHPLC, unlabelled amplicons were analyzed by reverse phase HPLC with fragment detection by absorbance at 260nm. Both methods had high sensitivity (95-100%) and specificity (100%). Overall, F-SSCP with external temperature control was the more sensitive method, but DHPLC was particularly useful for the rapid analysis of novel fragments.
Comments [show]
None has been submitted yet.
No. Sentence Comment
97 Comparison of F-SSCP and DHPLC Using a Panel of ABCC7 Mutations Gel condition Location Location 49:1 49:1 49:1 49:1 MDE MDE MDE Capillary DHPLC °C from 5' (bp) from 3' (bp) 15 20 25 35 20 25 35 35 N/A Exon 3 (320bp) E60X 128 192 + + + + + + + + - P67L 150 170 + + + - + + + - + R75X 173 147 + + + + + + + + + R75Q 174 146 + + + - + + + + + G85E 204 116 + + + - + + + + + L88S 213 107 + + + + + + + + + Exon 4 (400bp) 441delA 135 265 + + + + + + + + + D110H 154 246 + + + + + + - + + R117H/H 176 224 + + + + + + + + N/A R117R/H 176 224 + + + + + + + + + L137H 236 164 + + + + + + + + + I148T 261 139 + + + + + + + + + 621+1 (G>T) 309 91 + + + + + + + + + Exon 7 (360bp) R334W 180 180 + + + + + + + - + 1058delC 105 255 + + + + + + + + + 1078delT 125 235 + + + - + + + + + 1138insG 226 134 - + + - + + + + + 1154insTC 202 158 + + + + + + + + + 1161delC 209 151 + + + + + + + + + R347H 220 140 + + + + + + - + + R347P 220 140 + + + - + + + - + A349V 226 134 + + + + + + + + + W356X 248 112 + + + + + + + + + Exon 10 (365bp) M470V 143 222 + + + + + + + + + Q493X 212 153 + + + + + + - + - DelF508 255 110 + + + + + + + + - Del I507 253 112 + + + + + + + + + V520F 293 72 + + - + + - + - + Exon 11 (190bp) 1717-1 (G>A) 54 136 + + + - + + - + + G542X 94 96 + + + - + + - + + S549N 116 74 + + + + + + + + - S549R 117 73 + + + + - - - + + G551D 122 68 + - - - + + + - + R553X 127 63 + + + + + + + + + G551D/R553X + + + + + + + + + R560T 149 41 + + + - - - - - + R560K 149 41 + + + - + + + - + 1811+1 (G>C) 150 40 + + + + + + + + + Exon 12 (250bp) 1898+1(G>A) 167 83 + + + + + + - + + Exon 13a (290bp) C590W 87 203 + + - - + - - + + Exon 13b (405bp) 2184insA 148 257 + + + + + + + - + R709X 220 185 - + - - - - - - + V754M 453 52 + + + + + + + - - Exon 13c (345bp) V754M 65 280 + + + + + + - - + R785X 158 187 + + - - + + - - + Exon 19 (370bp) 3601-17 (T>C) 29 341 - + + - + + + - + R1162X 61 309 + + - - + - - + + 3659delC 105 265 - - - + + + + + + Y1182X 123 247 - + + - + + + - + Exon 20 (370bp) W1282X 186 184 + + + + + + + + + % detected 90 96 86 66 94 88 74 72 90 remainder were detected using DGGE.
X
ABCC7 p.Ala349Val 10862085:97:946
status: NEW[hide] Sensitivity of single-strand conformation polymorp... Hum Mol Genet. 1994 May;3(5):801-7. Ravnik-Glavac M, Glavac D, Dean M
Sensitivity of single-strand conformation polymorphism and heteroduplex method for mutation detection in the cystic fibrosis gene.
Hum Mol Genet. 1994 May;3(5):801-7., [PMID:7521710]
Abstract [show]
The gene responsible for cystic fibrosis (CF) contains 27 coding exons and more than 300 independent mutations have been identified. An efficient and optimized strategy is required to identify additional mutations and/or to screen patient samples for the presence of known mutations. We have tested several different conditions for performing single-stranded conformation polymorphism (SSCP) analysis in order to determine the efficiency of the method and to identify the optimum conditions for mutation detection. Each exon and corresponding exon boundaries were amplified. A panel of 134 known CF mutations were used to test the efficiency of detection of mutations. The SSCP conditions were varied by altering the percentage and cross-linking of the acrylamide, employing MDE (an acrylamide substitute), and by adding sucrose and glycerol. The presence of heteroduplexes could be detected on most gels and in some cases contributed to the ability to distinguish certain mutations. Each analysis condition detected 75-98% of the mutations, and all of the mutations could be detected by at least one condition. Therefore, an optimized SSCP analysis can be used to efficiently screen for mutations in a large gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
121 1078delT (35), L327R (Ravnik-Glavac a al., unpublished), R334W (36), D36K (31), R347L (26), R347P (14), A349V (26), R352Q (30), 1221delCT (34); Exon 8: W401X (31), 1342-1G-C (25); Exon 9: G458V (37), 1525 -1G-A (38); Exon 10: S492F (34), Q493X (39), 1609delCA (40,17), deltaI507 (39,41), deltaF5O8 (3), 1717-1G-A (39,42); Exon 11: G542X (39), S549N, G551D, R553X (43), R553Q (44), A559T (43), R560K (Fine et al., pers. comm.), R560T (39); Exon 12: Y563N (39), 1833delT (Schwartz et al., pers. comm.), P574H (39), 1898 + 1G-C (31), 1898+3A-G (Ferrari et al., pers. comm.); Exon 13: G628R(G-C) (31), Q685X (Firec et al., pers. comm.), K716X (26), L719X (Dork etal., pers. comm.), 2522insC (15), 2556insAT (45), E827X (34); Exon 14a: E831X (Ffrec et al., pers. comm.), R851X (29), 2721delll (31), C866Y (Audrezet et al., pers. comm.); Exon 14b: 2789+5G-A (Highsmith et al., pers. comm.); Exon 15: 2907denT (21), 2991del32 (Dark and TQmmler, pers. comm.), G970R (31); Exon 16: S977P, 3100insA (D6rk et al., pers. comm.); Exon 17a: I1005R (Dork and TQmmler, pers. comm.), 3272-1G-A (46); Exon 17b: H1054D (F6rec et al., pers. comm.), G1061R (Fdrec et al., pers. comm.), 332Oins5, R1066H, A1067T (34), R1066L (Fe"rec etal., pers. comm.), R1070Q (46), E1104X (Zielenski el al., pers. comm.), 3359delCT (46), L1077P (Bozon « a/., pers. comm.), H1085R (46), Y1092X (Bozon etal., pers. comm.), W1098R, M1101K (Zielenski et al., pers. comm.); Exon 18: D1152H (Highsmith et al., pers. comm.); Exon 19:R1162X (36), 3659delC (39), 3662delA (25), 3667del4 (Chillon et al., pers. comm.), 3737ddA (35), 3821ddT (15), I1234V (35), S1235R (31), Q1238X (26), 3849G-A (25), 385O-3T-G (38); Exon20:3860ins31 (Chillon etal., pers. comm.), S1255X (47), 3898insC (26), 3905insT (Malik et al., pers. comm.), D127ON (48), W1282X (49), Q1291R (Dork et al., pers. comm.), Exon 21: N1303H (35), N13O3K (50), W1316X (43); Exon 22: 11328L/4116delA (Dork and TQmmler, pers. comm.), E1371X (25); Exon 23: 4374+ 1G-T (38); Exon 24: 4382delA (Claustres et al., pers. comm.).
X
ABCC7 p.Ala349Val 7521710:121:104
status: NEW[hide] Identification of 12 novel mutations in the CFTR g... Hum Mol Genet. 1993 Jan;2(1):51-4. Audrezet MP, Mercier B, Guillermit H, Quere I, Verlingue C, Rault G, Ferec C
Identification of 12 novel mutations in the CFTR gene.
Hum Mol Genet. 1993 Jan;2(1):51-4., [PMID:7683952]
Abstract [show]
Over 200 mutations, besides the deletion delta F508, have been identified in the CFTR gene and are known to cause CF. In order to characterize the molecular defects of non delta F508 CF chromosomes of various French origin, we have combined the techniques of denaturing gradient gel electrophoresis (DGGE) and direct sequencing to screen for mutations in the whole coding sequence of the CFTR gene corresponding to the 27 exons and their exon-intron boundaries. This approach enabled us to identify 12 novel mutations which are described here. We have systematically tested a large number of other nucleotide changes distributed in the 27 exons, each of them was clearly detected. These data support the notion that the DGGE conditions we have defined for screening coding sequence of the CFTR gene allows the identification of most of, if not all, the CFTR gene mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
41 A349V This missense mutation results in a valine instead of an alanine due to a modification of nucleotide 1178 (C - T).
X
ABCC7 p.Ala349Val 7683952:41:0
status: NEW79 Lane 1: 3850-1 G-A, Lane 2: Q1238X, Lane 3: 2622 + 1 G-A, Lane 4: A349V, Lane 5: A534E. recently by DGGE resulting in high mutation detection rates, such as 95% in the factor Vm gene (25) or over 98% in the CFTR gene of the Breton population in the Celtic part of Brittany.
X
ABCC7 p.Ala349Val 7683952:79:66
status: NEW92 For the four other mutations: R347L and A349V in exon 7, A534E in exon 11 and 3601 -17 T - C, we have only indirect evidence in support of their being causative of disease: (i) these changes have never been observed on more than 300 non CF chromosomes so far examined (this panel of non CF chromosomes has been established from a series of non CF chromosomes, the normal alleles being deduced from non carrier siblings of non affected children); (ii) the missense mutations result in a switch to an amino acid of different polarity at that site; and (iii) the amino acids 347 (arginine) and 534 (alanine) are conserved in the CFTR of human, cow, Xenopus, mouse and dogfish, and the amino acid 349 (alanine) is conserved in the CFTR of human, cow and Xenopus (20).
X
ABCC7 p.Ala349Val 7683952:92:40
status: NEW[hide] A 96-well formatted method for exon and exon/intro... Anal Biochem. 2006 Jun 15;353(2):226-35. Epub 2006 Apr 5. Lucarelli M, Narzi L, Piergentili R, Ferraguti G, Grandoni F, Quattrucci S, Strom R
A 96-well formatted method for exon and exon/intron boundary full sequencing of the CFTR gene.
Anal Biochem. 2006 Jun 15;353(2):226-35. Epub 2006 Apr 5., [PMID:16635477]
Abstract [show]
Full genotypic characterization of subjects affected by cystic fibrosis (CF) is essential for the definition of the genotype-phenotype correlation as well as for the enhancement of the diagnostic and prognostic value of the genetic investigation. High-sensitivity diagnostic methods, capable of full scanning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, are needed to enhance the significance of these genetic assays. A method for extensive sequencing of the CFTR gene was optimized. This method was applied to subjects clinically positive for CF and to controls from the general population of central Italy as well as to a single subject heterozygous for a mild mutation and with an uncertain diagnosis. Some points that are crucial for the optimization of the method emerged: a 96-well format, primer project and purification, and amplicon purification. The optimized method displayed a high degree of diagnostic sensitivity; we identified a subset of 13 CFTR mutations that greatly enhanced the diagnostic sensitivity of common methods of mutational analysis. A novel G1244R disease causing mutation, leading to a CF phenotype with pancreatic sufficiency but early onset of pulmonary involvement, was detected in the subject with an uncertain diagnosis. Some discrepancies between our results and previously published CFTR sequence were found.
Comments [show]
None has been submitted yet.
No. Sentence Comment
139 In this work, we found a limited subset of 13 mutations (not included in the PCR/OLA/SCS assay) in 7 CFTR exons, significantly improving the sensitivity of standard assays: D110H, R117C, and H139R (exon 4); R334L, T338I, and A349V (exon 7); S549R(A->C) (exon 11); Y849X (exon 14a); L997F (exon 17a); L1065P, R1066C, and L1077P (exon 17b); and G1244E (exon 20).
X
ABCC7 p.Ala349Val 16635477:139:225
status: NEW[hide] PGD for cystic fibrosis patients and couples at ri... Reprod Biomed Online. 2013 May;26(5):420-30. doi: 10.1016/j.rbmo.2013.01.006. Epub 2013 Jan 29. Rechitsky S, Verlinsky O, Kuliev A
PGD for cystic fibrosis patients and couples at risk of an additional genetic disorder combined with 24-chromosome aneuploidy testing.
Reprod Biomed Online. 2013 May;26(5):420-30. doi: 10.1016/j.rbmo.2013.01.006. Epub 2013 Jan 29., [PMID:23523379]
Abstract [show]
Preimplantation genetic diagnosis (PGD) for inherited disorders is presently applied for more than 300 different conditions. The most frequent PGD indication is cystic fibrosis (CF), the largest series of which is reviewed here, totalling 404 PGD cycles. This involved testing for 52 different CFTR mutations with almost half of the cases (195/404 cycles) performed for DeltaF508 mutation, one-quarter (103/404 cycles) for six other frequent mutations and only a few for the remaining 45 CFTR mutations. There were 44 PGD cycles performed for 25 CF-affected homozygous or double-heterozygous CF patients (18 male and seven female partners), which involved testing simultaneously for three mutations, resulting in birth of 13 healthy CF-free children and no misdiagnosis. PGD was also performed for six couples at a combined risk of producing offspring with CF and another genetic disorder. Concomitant testing for CFTR and other mutations resulted in birth of six healthy children, free of both CF and another genetic disorder in all but one cycle. A total of 96 PGD cycles for CF were performed with simultaneous aneuploidy testing, including microarray-based 24-chromosome analysis, as a comprehensive PGD for two or more conditions in the same biopsy material.
Comments [show]
None has been submitted yet.
No. Sentence Comment
41 Mutation Region Legacy name cDNA name Protein name # of Patient Number of cycles Number of transfers Number of embryos transferred Pregnancy Birth 125G/C c.-8G>C NA Promoter 1 2 2 2 1 (1) 0 E60X c.178G>T p.Glu60X Exon 3 1 1 1 1 0 0 G85E c.254G>A p.Gly85Glu Exon 3 1 1 1 2 1 1 R75Q c.224G>A p.Arg75Gln Exon 3 1 1 1 1 1 1 R75X c.223C>T p.Arg75X Exon 3 1 1 1 2 1 2 A120T c.358G>A p.Ala120Thr Exon 4 1 1 1 1 0 0 R117C c.349C>T p.Arg117Cys Exon 4 2 6 3 5 1 1 R117H c.350G>A p.Arg117His Exon 4 14 22 19 38 8 6 621+1G-T c.489 &#b1; 1G>T - Intron 4 4 7 4 6 2 1 852del22 c.720_741 p.Gly241GlufsX13 Exon 6 1 1 0 0 0 0 L206W c.617T>G p.Leu206Trp Exon 6 1 2 1 2 0 0 A349V c.1046C>T p.Ala349Val Exon 8 1 2 2 4 2 4 1078delT c.948delT p.Phe316LeufsX12 Exon 8 1 1 1 1 1 0 1154ins-TC c.1022_1023insTC p.Phe342HisfsX28 Exon 8 1 2 1 2 0 0 Q359K/T360K c.
X
ABCC7 p.Ala349Val 23523379:41:654
status: NEWX
ABCC7 p.Ala349Val 23523379:41:672
status: NEW56 (CA)n EXON 4 (GATT)n Intron 4 Poly T tract Intron 10 R117H G--A R75XH C--T A120T G--A I148T T--C A349V C--T 1259 Ins A 621+1 G--T EXON 3 EXON 7 EXON 8 Delta I 507 EXON 10 Delta F 508 EXON 11 1717-1 G--A G542X G--T G550X G--T G551D G--A R553X C--T R560T G--C EXON 19 EXON 20 EXON 21 R1162X C--T W1282X G--A N1303K C--G IVS 1 Mutations in CFTR gene (PGD PERFORMED FOR 52 MUTATIONS) IVS 6 a IVS 8 (CA)n (CA)n IVS 17b (TA)n (CA)n D7S486 D7S522 D7S633 D7S677 D7S2847 D7S655 115,89 116.07 117.01 117.13 117.19 117.20 118.6 118.81 Mb IVS8-1 IVS8-2 Figure 1 Mutations (above) and linked markers (below) in CFTR that were used in multiplex PCR.
X
ABCC7 p.Ala349Val 23523379:56:97
status: NEW[hide] Analysis of cystic fibrosis gene mutations in chil... J Med Case Rep. 2014 Oct 10;8:339. doi: 10.1186/1752-1947-8-339. Dell'Edera D, Benedetto M, Gadaleta G, Carone D, Salvatore D, Angione A, Gallo M, Milo M, Pisaturo ML, Di Pierro G, Mazzone E, Epifania AA
Analysis of cystic fibrosis gene mutations in children with cystic fibrosis and in 964 infertile couples within the region of Basilicata, Italy: a research study.
J Med Case Rep. 2014 Oct 10;8:339. doi: 10.1186/1752-1947-8-339., [PMID:25304080]
Abstract [show]
INTRODUCTION: Cystic fibrosis is the most common autosomal recessive genetic disease in the Caucasian population. Extending knowledge about the molecular pathology on the one hand allows better delineation of the mutations in the CFTR gene and the other to dramatically increase the predictive power of molecular testing. METHODS: This study reports the results of a molecular screening of cystic fibrosis using DNA samples of patients enrolled from January 2009 to December 2013. Patients were referred to our laboratory for cystic fibrosis screening for infertile couples. In addition, we identified the gene mutations present in 76 patients affected by cystic fibrosis in the pediatric population of Basilicata. RESULTS: In the 964 infertile couples examined, 132 subjects (69 women and 63 men) resulted heterozygous for one of the CFTR mutations, with a recurrence of carriers of 6.85%. The recurrence of carriers in infertile couples is significantly higher from the hypothetical value of the general population (4%). CONCLUSIONS: This study shows that in the Basilicata region of Italy the CFTR phenotype is caused by a small number of mutations. Our aim is to develop a kit able to detect not less than 96% of CTFR gene mutations so that the relative risk for screened couples is superimposable with respect to the general population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
59 As mentioned before, molecular screening Table 2 Comparison between the results obtained in this study and those obtained in a previous study Castaldo et al. [14] Mutations observed in the present study F508del 55.8% (29) 48.62% (141) N1303K 3.8% (2) 9.31% (27) G542X 3.8% (2) 8.96% (26) W1282X 3.8% (2) 1.03% (3) 2183AA>G 5.8% (3) 2.76% (8) R1162X 0 0 1717-1G>A 1.9% (1) 0 T338I 0 0 R347P 0 0.69% (2) 711+5G>A 0 0 852del22 5.8% (3) 1.03% (3) 4382delA 0 0.69% (2) 1259insA 0 0.34% (1) 4016insT 0 0.34% (1) R553X 0 0.34% (1) R1158X 0 0 L1077P 0 1.03% (3) I502T 0 0 3849+10kbC>T 1.9% (1) 0.34% (1) D579G 0 0.69% (2) G1244E 3.8% (2) 0 G1349D 0 0.34% (1) 2789+5G>A 0 1.03% (3) 711+1G>T 0 0 L1065P 0 0 2522insC 0 0 E585X 0 0 G85E 0 0 G178R 0 0 D1152H 0 3.10% (9) I148T-3195del6 0 0 I148T (alone) 0 4.48% (13) R334W 0 0 DI507 0 0.69% (2) I1005R 0 0 3272-26A>G 0 0 2711delT 0 0 L558S 1.9% (1) 0.34% (1) W1063X 0 0 D110H 0 0 S549R (A>C) 1.9% (1) 0.69% (2) 2184insA 0 0 3131del22 0 0 Table 2 Comparison between the results obtained in this study and those obtained in a previous study (Continued) R709N 0 0 A349V 0 0 4015insA 0 0 Y849X 1.9% (1) 0.34% (1) G551D 0 1.03% (3) 621+3A>G 0 0.34% (1) E831X 0 0 I507del 0 0.69% (2) IVS8 TG12/t5 0 1.03% (3) H139R (A->G) 0 0.34% (1) 1248+1G>A 0 0.34% (1) R74W;V201M;D1270N 0 0.69% (2) S1455X 0 0.34% (1) dele 2,3 (21kb) 0 0.34% (1) 991del5 0 0.34% (1) UNKNOWN 7 %(4) 4.83% (14) F508C 0 0.69% (2) TOTAL 52 290 of CF is highly recommended in the USA by the National Institutes of Health Consensus Development Conference Statement on genetic testing for cystic fibrosis [17].
X
ABCC7 p.Ala349Val 25304080:59:1098
status: NEW