ABCC7 p.Leu1093Pro
ClinVar: |
c.3278T>C
,
p.Leu1093Pro
?
, not provided
|
CF databases: |
c.3278T>C
,
p.Leu1093Pro
(CFTR1)
?
, The above mutation was found by SSCP/HA in a compound heterozygote; the other mutation is N1303K. The patient is Caucasian, has pancreatic insufficiency, elevated sweat chloride concentrations (116 mEg/L on 12/13/67), and pulmonary disease that required a lung transplant.
|
Predicted by SNAP2: | A: D (53%), C: N (57%), D: D (80%), E: D (75%), F: N (53%), G: D (75%), H: D (63%), I: N (78%), K: D (80%), M: N (57%), N: D (63%), P: D (80%), Q: D (59%), R: D (80%), S: D (63%), T: D (63%), V: N (61%), W: D (63%), Y: D (63%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: N, G: D, H: D, I: N, K: D, M: N, N: D, P: D, Q: D, R: D, S: D, T: N, V: N, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Comprehensive mutation screening in a cystic fibro... Pediatrics. 2001 Feb;107(2):280-6. Wine JJ, Kuo E, Hurlock G, Moss RB
Comprehensive mutation screening in a cystic fibrosis center.
Pediatrics. 2001 Feb;107(2):280-6., [PMID:11158459]
Abstract [show]
OBJECTIVES AND BACKGROUND: The identities of a cystic fibrosis (CF) patient's CFTR mutations can influence therapeutic strategies, but because >800 CFTR mutations exist, cost-effective, comprehensive screening requires a multistage approach. Single-strand conformation polymorphism and heteroduplex analysis (SSCP/HA) can be an important part of mutation detection, but must be calibrated within each laboratory. The sensitivity of a combined commercial-SSCP/HA approach to genotyping in a large, ethnically diverse US center CF population has not been established. STUDY DESIGN: We screened all 27 CFTR exons in 10 human participants who had an unequivocal CF diagnosis including a positive sweat chloride test and at least 1 unknown allele after commercial testing for the 70 most common mutations by SSCP/HA. These participants were compared with 7 participants who had negative sweat tests but at least 1 other CF-like symptom meriting complete genotyping. RESULTS: For the 10 CF participants, we detected 11 of 16 unknown alleles (69%) and all 4 of the known alleles (100%), for an overall rate of 75% inpatients not fully genotyped by conventional 70 mutation screen. For 7 participants with negative sweat tests, we confirmed 1 identified mutation in 14 alleles and detected 3 additional mutations. Mutations detected in both groups included 7 missense mutations (S13F, P67L, G98R, S492F, G970D, L1093P, N1303K) and 9 deletion, frameshift, nonsense or splicing mutations (R75X, G542X, DeltaF508, 451-458Delta8 bp, 5T, 663DeltaT, exon 13 frameshift, 1261+1G-->A and 3272-26A-->G). Three of these mutations were novel (G970D, L1093P, and 451-458Delta8 bp(1)). Thirteen other changes were detected, including the novel changes 1812-3 ins T, 4096-278 ins T, 4096-265 ins TG, and 4096-180 T-->G. CONCLUSION: When combined with the 70 mutation Genzyme test, SSCP/HA analysis allows for detection of >95% of the mutations in an ethnically heterogeneous CF center population. We discuss 5 possible explanations that could account for the few remaining undetected mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
16 Mutations detected in both groups included 7 missense mutations (S13F, P67L, G98R, S492F, G970D, L1093P, N1303K) and 9 deletion, frameshift, nonsense or splicing mutations (R75X, G542X, ⌬F508, 451-458⌬8 bp, 5T, 663⌬T, exon 13 frameshift, 1261؉1G3A and 3272-26A3G).
X
ABCC7 p.Leu1093Pro 11158459:16:97
status: NEW17 Three of these mutations were novel (G970D, L1093P, and 451-458⌬8 bp1).
X
ABCC7 p.Leu1093Pro 11158459:17:44
status: NEW115 Mutation Detection in 10 Participants With Positive Sweat Chloride Values I.D. Pancreatic Function Mutation Status Discovered Mutations (Novel) Polymorphisms SP1 PI N1303K/unk* L1093P (17b), M470V (10)* SP2 PI unk*/unk* S13F (exon1) 2184 ins A (exon 13) GATT7/7, 2694 T/G SP3 PS unk*/unk* ⌬451-458 (4); G970D (16) GATT7/6, 2694 T/G SP4 PS unk*/unk* R75X (3), G98R (4) GATT7/7, 492 G/A SP5 PS unk*/unk 3272-26A/G (17b) M470V/M470V (10) SP6 PI/PS (mild) ⌬F508/unk None found - SP7 PI ⌬F508/unk None found GATT6/7,1001ϩ11C/T (6b), M470V (10) SP8 PI unk*/unk S492F (10) GATT7/7 GT11/11 M470V/M470V SP9 PI ⌬F508/unk None found - SP10 PI unk*/unk* 663 ⌬T/663 ⌬T GATT6/6, 2694T3G Column labeled Pancreatic Function indicates the need for dietary supplementation with pancreatic enzymes.
X
ABCC7 p.Leu1093Pro 11158459:115:177
status: NEW135 Novel mutations ⌬451-458 and G970D were reported separately1; novel mutation L1093P has been submitted for publication.
X
ABCC7 p.Leu1093Pro 11158459:135:84
status: NEW[hide] Cystic fibrosis: a worldwide analysis of CFTR muta... Hum Mutat. 2002 Jun;19(6):575-606. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM
Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening.
Hum Mutat. 2002 Jun;19(6):575-606., [PMID:12007216]
Abstract [show]
Although there have been numerous reports from around the world of mutations in the gene of chromosome 7 known as CFTR (cystic fibrosis transmembrane conductance regulator), little attention has been given to integrating these mutant alleles into a global understanding of the population molecular genetics associated with cystic fibrosis (CF). We determined the distribution of CFTR mutations in as many regions throughout the world as possible in an effort designed to: 1) increase our understanding of ancestry-genotype relationships, 2) compare mutational arrays with disease incidence, and 3) gain insight for decisions regarding screening program enhancement through CFTR multi-mutational analyses. Information on all mutations that have been published since the identification and cloning of the CFTR gene's most common allele, DeltaF508 (or F508del), was reviewed and integrated into a centralized database. The data were then sorted and regional CFTR arrays were determined using mutations that appeared in a given region with a frequency of 0.5% or greater. Final analyses were based on 72,431 CF chromosomes, using data compiled from over 100 original papers, and over 80 regions from around the world, including all nations where CF has been studied using analytical molecular genetics. Initial results confirmed wide mutational heterogeneity throughout the world; however, characterization of the most common mutations across most populations was possible. We also examined CF incidence, DeltaF508 frequency, and regional mutational heterogeneity in a subset of populations. Data for these analyses were filtered for reliability and methodological strength before being incorporated into the final analysis. Statistical assessment of these variables revealed that there is a significant positive correlation between DeltaF508 frequency and the CF incidence levels of regional populations. Regional analyses were also performed to search for trends in the distribution of CFTR mutations across migrant and related populations; this led to clarification of ancestry-genotype patterns that can be used to design CFTR multi-mutation panels for CF screening programs. From comprehensive assessment of these data, we offer recommendations that multiple CFTR alleles should eventually be included to increase the sensitivity of newborn screening programs employing two-tier testing with trypsinogen and DNA analysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
113 Mexico ∆F508 (41.6%) G551S (0.5%) 75.5 57.0 35 374/194 Orozco et al.[1993]; Villalobos- G542X (5.6%) 1078delT (0.5%) Torres et al. [1997]; Liang et al. ∆I507 (2.5%) Y1092X (0.5%) [1998]; Orozco et al. [2000] S549N (1.9%) R117H (0.5%) N1303K (1.7%) G85E (0.5%) R75X (1.5%) 1716G→A (0.5%) 406-1G→A (1.5%) W1204X (0.5%) I148T (1.5%) W1098C (0.5%) 3849+10KbC→T (1.5%) 846delT (0.5%) 621+1G→T (1.2%) P750L (0.5%) 2055del9→A (1.0%) V754M (0.5%) 935delA (1.0%) R75Q (0.5%) I506T (1.0) W1096X (0.5%) 3199del6 (1.0%) L558S (0.5%) 2183AA→G (1.0%) 4160insGGGG (0.5%) G551D (0.5%) 297-1G→A (0.5%) R553X (0.5%) H199Y (0.5%) 1924del7 (0.5%) United States ∆F508 (68.6%) R553X (0.9%) 79.7 63.5 10 25048 Cystic Fibrosis Foundation (total) G542X (2.4%) 621+1G→T (0.9%) [1998] G551D (2.1%) 1717-1G→A (0.7%) W1282X (1.4%) 3849+10KbC→T (0.7%) N1303K (1.3%) R117H (0.7%) United States ∆F508 (48.0%) S1255X (1.4%) 77.3 59.8 16 160/148 Carles et al. [1996]; Macek et al. (African 3120+1G→A (12.2%) 444delA (0.7%) [1997]; Dörk et al. [1998]; American) 2307insA (2.0%) R334W (0.7%) Friedman et al. [1998] A559T (2.0%) ∆I507 (0.7%) R553X (2.0%) 1717-1G→A (0.7%) ∆F311 (2.0%) G542X (0.7%) G480C (1.4%) S549N (0.7%) 405+3A→C (1.4%) G551D (0.7%) United States 1) L1093P - - 1 2 Yee et al. [2000] (Cherokee) United States Non-French: French: Non- Non- Non- Non- Bayleran et al. [1996] (Maine) ∆F508 (82.0%) ∆F508 (58%) French: French: French: French: G542X (2.6%) 711+1G→T (8.3%) 95.3 90.8 11 191 G551D (2.6%) I148T (4.2%) French: French: French: French: N1303K (2.1%) A455E (4.2%) 80.3 64.5 8 72 R560T (1.0%) 1717-1G→A (1.4%) Total: 621+1G→T (1.0%) G85E (1.4%) 263 711+1G→T (1.0%) 621+1G→T (1.4%) R117H (1.0%) Y1092X (1.4%) 1717-1G→A (1.0%) G85E (0.5%) W1282X (0.5%) TABLE 1. Continued. Estimated Projected detection of Number of Number of Country/ allele two CFTR mutations chromosomes Region Mutation array detectiona mutationsb includedc (max/min)d Reference WORLDWIDEANALYSISOFCFTRMUTATIONS589 United States ∆F508 (46.0%) R334W (1.6%) 58.5 34.2 7 129 Grebe et al. [1994] (SW Hispanic) G542X (5.4%) W1282X (0.8%) 3849+10KbC→T (2.3%) R553X (0.8%) R1162X (1.6%) United States 1) R1162X - - 3 17 Mercier et al. [1992] (SW Native 2) D648V American) 3) G542X United States 1) R1162X 3) G542X - - 4 16 Mercier et al. [1994] (Zuni Pueblo) 2) 3849+10KbC®T 4) D648V Venezuela ∆F508 (29.6%) G542X (3.7%) 33.3 11.1 2 54 Restrepo et al. [2000] Other Regions Australia ∆F508 (76.9%) 621+1G→T (1.1%) 88.7 78.7 8 761/464 CFGAC [1994] G551D (4.5%) N1303K (0.9%) G542X (2.8%) W1282X (0.6%) R553X (1.3%) R117H (0.6%) East Asia 1) 1898+1G®T 2) 1898+5G®T - - 2 28 Suwanjutha et al. [1998] Hutterite 1) M1101K (69.0%) 2) DF508 (31.0%) - - 2 32 Zielenski et al. [1993] Brethren New Zealand ∆F508 (78.0%) N1303K (1.9%) 87.4 76.4 5 636 CFGAC [1994] G551D (4.4%) 621+1G→T (1.1%) G542X (2.0%) *This table presents the mutation panels for all regions investigated in this study.
X
ABCC7 p.Leu1093Pro 12007216:113:1371
status: NEW213 Ideal Recommended CFTR Mutation Screening Panel for 2001 Neonatal Screening in the USA* Location Estimated Mutation in CFTRa percentageb Reason for inclusion DF508 Exon 10 68.6% CFF registry, >1%, Pan-European G542X Exon 11 2.4% CFF registry, >1%, Mediterranean G551D Exon 11 2.1% CFF registry, >1%, Celtic W1282X Exon 20 1.4% CFF registry, >1%, Ashkenazi Jew N1303K Exon 21 1.3% CFF registry, >1%, Mediterranean R553X Exon 11 0.9% CFF registry, >0.5%, Hispanic 621+1G®T Intron 4 0.9% CFF registry, >0.5%, multi-ethnic 1717-1G®A Intron 10 0.7% CFF registry, >0.5%, Italian 3849+10KbC®T Intron 19 0.7% CFF registry, >0.5%, Hispanic R117Hc Exon 4 0.7% CFF registry, >0.5% 1898+1G→T Intron 12 0.4% CFF registry, >0.1%, East Asian DI507 Exon 10 0.3% CFF registry, >0.1%, Hispanic 2789+5G®A Intron 14b 0.3% CFF registry, >0.1% G85E Exon 3 0.3% CFF registry, >0.1% R347P Exon 7 0.2% CFF registry, >0.1% R334W Exon 7 0.2% CFF registry, >0.1%, multi-ethnic R1162X Exon 19 0.2% CFF registry, >0.1%, multi-ethnic R560T Exon 11 0.2% CFF registry, >0.1% 3659delC Exon 19 0.2% CFF registry, >0.1% A455E Exon 9 0.2% CFF registry, >0.1% 2184delA Exon 13 0.1% CFF registry, >0.1% S549N Exon 11 0.1% CFF registry, >0.1%, multi-ethnic 711+1G®T Intron 5 0.1% CFF registry, >0.1% R75X Exon 3 0.2% Hispanic 406-1G→A Intron 3 0.2% Hispanic I148T Exon 4 0.2% Hispanic, French 2055del9→A Exon 13 0.1% Hispanic 935delA Exon 6b 0.1% Hispanic I506T Exon 10 0.1% Hispanic 3199del6 Exon 17a 0.1% Hispanic 2183AA→G Exon 13 0.1% Hispanic 3120+1G®A Intron 16 1.5% African American, Arabian 2307insA Exon 13 0.2% African American A559T Exon 11 0.2% African American ∆F311 Exon 7 0.2% African American G480C Exon 10 0.2% African American 405+3A→C Intron 3 0.2% African American S1255X Exon 20 0.2% African American L1093P Exon 17b Undetermined Native American D648V Exon 13 Undetermined Native American I1234V Exon 19 Undetermined Arabian linkage S549R Exon 11 Undetermined Arabian linkage 1898+5G→T Intron 12 Undetermined East Asian linkage CFTRdele2,3 Exons 2,3 Undetermined Eastern European linkage (Slavic) Y1092X Exon 17b Undetermined French linkage 394delTT Exon 3 Undetermined Nordic linkage Y569D Exon 12 Undetermined Pakistani linkage 3905insT Exon 20 Undetermined Swiss linkage (also: Amish, Acadian, Mennonite) 1898+1G®A Intron 12 Undetermined Welsh linkage M1101k Exon 17b Undetermined Hutterite ancestry *This table presents the top 50 mutations in the USA based on the Cystic Fibrosis Foundation CF Registry data from 1997 [Cystic Fibrosis Foundation, 1998], and data generated during our investigation.
X
ABCC7 p.Leu1093Pro 12007216:213:1853
status: NEW[hide] Cooperative assembly and misfolding of CFTR domain... Mol Biol Cell. 2009 Apr;20(7):1903-15. Epub 2009 Jan 28. Du K, Lukacs GL
Cooperative assembly and misfolding of CFTR domains in vivo.
Mol Biol Cell. 2009 Apr;20(7):1903-15. Epub 2009 Jan 28., [PMID:19176754]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR) architecture consists of two membrane spanning domains (MSD1 and -2), two nucleotide binding domains (NBD1 and -2), and a regulatory (R) domain. Several point mutations lead to the channel misprocessing, with limited structural perturbation of the mutant domain. To gain more insight into the basis of CFTR folding defect, the contribution of domain-wise and cooperative domain folding was assessed by determining 1) the minimal domain combination that is recognized as native and can efficiently escape the endoplasmic reticulum (ER) retention and 2) the impact of mutation on the conformational coupling among domains. One-, two-, three-, and most of the four-domain assemblies were retained at the ER. Solubilization mutations, however, rescued the NBD1 processing defect conceivably by thermodynamic stabilization. The smallest folding unit that traversed the secretory pathway was composed of MSD1-NBD1-R-MSD2 as a linear or split polypeptide. Cystic fibrosis-causing missense mutations in the MSD1, NBD1, MSD2, and NBD2 caused conformational defect in multiple domains. We propose that cooperative posttranslational folding is required for domain stabilization and provides a plausible explanation for the global misfolding caused by point mutations dispersed along the full-length CFTR.
Comments [show]
None has been submitted yet.
No. Sentence Comment
37 MATERIALS AND METHODS Cell Lines Baby hamster kidney (BHK) cells, stably expressing the wt and mutant (G91R, L346P, L1093P, N1303K, ⌬F508, 4D, 1218X, 1158X, and 823X) CFTR with three tandem hemagglutinin (HA)-epitope (3HA) inserted into the fourth extracellular loop, were isolated and maintained as described previously (Sharma et al., 2004; Du et al., 2005).
X
ABCC7 p.Leu1093Pro 19176754:37:116
status: NEW252 Four CF mutations, G91R (Xiong et al., 1997), L346P (Choi et al., 2005), L1093P (Seibert et al., 1996), and N1303K (Gregory et al., 1991), localized to the transmembrane (TM) 1 and TM6 in MSD1, the cytosolic loop (CL) 4, and in the NBD2, respectively (Figure 7a).
X
ABCC7 p.Leu1093Pro 19176754:252:73
status: NEW274 Remarkably, the G91R, L346P, ⌬F508, 4D, and L1093P mutations, regardless of their location, profoundly augmented the protease susceptibility of the NBD2 (ϳ30 kDa), probed with the M3A7 Ab (Figure 7g and Supplemental Figure S7c).
X
ABCC7 p.Leu1093Pro 19176754:274:51
status: NEW301 One of the most important observations of this study is that the NBD2 conformational stability was dramatically impaired regardless the localization of mutations (G91R, L346P, ⌬F508, 4D, and L1093P) in the NBD1, TM1, TM6, or CL4 (Figure 6e).
X
ABCC7 p.Leu1093Pro 19176754:301:198
status: NEW[hide] Genotyping microarray for the detection of more th... J Mol Diagn. 2005 Aug;7(3):375-87. Schrijver I, Oitmaa E, Metspalu A, Gardner P
Genotyping microarray for the detection of more than 200 CFTR mutations in ethnically diverse populations.
J Mol Diagn. 2005 Aug;7(3):375-87., [PMID:16049310]
Abstract [show]
Cystic fibrosis (CF), which is due to mutations in the cystic fibrosis transmembrane conductance regulator gene, is a common life-shortening disease. Although CF occurs with the highest incidence in Caucasians, it also occurs in other ethnicities with variable frequency. Recent national guidelines suggest that all couples contemplating pregnancy should be informed of molecular screening for CF carrier status for purposes of genetic counseling. Commercially available CF carrier screening panels offer a limited panel of mutations, however, making them insufficiently sensitive for certain groups within an ethnically diverse population. This discrepancy is even more pronounced when such carrier screening panels are used for diagnostic purposes. By means of arrayed primer extension technology, we have designed a genotyping microarray with 204 probe sites for CF transmembrane conductance regulator gene mutation detection. The arrayed primer extension array, based on a platform technology for disease detection with multiple applications, is a robust, cost-effective, and easily modifiable assay suitable for CF carrier screening and disease detection.
Comments [show]
None has been submitted yet.
No. Sentence Comment
53 Table 1. Continued CFTR location Amino acid change Nucleotide change 141 IVS 16 Splicing defect 3120 ϩ 1GϾA 142 IVS 16 Splicing defect 3121 - 2AϾG 143 IVS 16 Splicing defect 3121 - 2AϾT 144 E 17a Frameshift 3132delTG 145 E 17a I1005R 3146TϾG 146 E 17a Frameshift 3171delC 147 E 17a Frameshift 3171insC 148 E 17a del V1022 and I1023 3199del6 149 E 17a Splicing defect 3271delGG 150 IVS 17a Possible splicing defect 3272 - 26AϾG 151 E 17b G1061R 3313GϾC 152 E 17b R1066C 3328CϾT 153 E 17b R1066S 3328CϾA 154 E 17b R1066H 3329GϾA 155 E 17b R1066L 3329GϾT 156 E 17b G1069R 3337GϾA 157 E 17b R1070Q 3341GϾA 158 E 17b R1070P 3341GϾC 159 E 17b L1077P 3362TϾC 160 E 17b W1089X 3398GϾA 161 E 17b Y1092X (TAA) 3408CϾA 162 E 17b Y1092X (TAG) 3408CϾG 163 E 17b L1093P 3410TϾC 164 E 17b W1098R 3424TϾC 165 E 17b Q1100P 3431AϾC 166 E 17b M1101K 3434TϾA 167 E 17b M1101R 3434TϾG 168 IVS 17b 3500 - 2AϾT 3500 - 2AϾT 169 IVS 17b Splicing defect 3500 - 2AϾG 170 E 18 D1152H 3586GϾC 171 E 19 R1158X 3604CϾT 172 E 19 R1162X 3616CϾT 173 E 19 Frameshift 3659delC 174 E 19 S1196X 3719CϾG 175 E 19 S1196T 3719TϾC 176 E 19 Frameshift and K1200E 3732delA and 3730AϾG 177 E 19 Frameshift 3791delC 178 E 19 Frameshift 3821delT 179 E 19 S1235R 3837TϾG 180 E 19 Q1238X 3844CϾT 181 IVS 19 Possible splicing defect 3849 ϩ 4AϾG 182 IVS 19 Splicing defect 3849 ϩ 10 kb CϾT 183 IVS 19 Splicing defect 3850 - 1GϾA 184 E 20 G1244E 3863GϾA 185 E 20 G1244V 3863GϾT 186 E 20 Frameshift 3876delA 187 E 20 G1249E 3878GϾA 188 E 20 S1251N 3884GϾA 189 E 20 T1252P 3886AϾC 190 E 20 S1255X 3896CϾA and 3739AϾG in E19 191 E 20 S1255L 3896CϾT 192 E 20 Frameshift 3905insT 193 E 20 D1270N 3940GϾA 194 E 20 W1282R 3976TϾC 195 E 20 W1282X 3978GϾA 196 E 20 W1282C 3978GϾT 197 E 20 R1283M 3980GϾT 198 E 20 R1283K 3980GϾA 199 IVS 20 Splicing defect 4005 ϩ 1GϾA 200 E 21 Frameshift 4010del4 201 E 21 Frameshift 4016insT 202 E 22 Inframe del E21 del E21 203 E 21 N1303K 4041CϾG 204 E 24 Frameshift 4382delA Genomic and Synthetic Template Samples Where possible, native genomic DNA was collected.
X
ABCC7 p.Leu1093Pro 16049310:53:857
status: NEW150 Primers Generated to Create Synthetic Templates That Serve As Positive Mutation Controls Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј 175delC synt F T(15)ATTTTTTTCAGGTGAGAAGGTGGCCA 175delC synt R T(15)ATTTGGAGACAACGCTGGCCTTTTCC W19C synt F T(15)TACCAGACCAATTTTGAGGAAAGGAT W19C synt R T(15)ACAGCTAAAATAAAGAGAGGAGGAAC Q39X synt F T(15)TAAATCCCTTCTGTTGATTCTGCTGA Q39X synt R T(15)AGTATATGTCTGACAATTCCAGGCGC 296 ϩ 12TϾC synt F T(15)CACATTGTTTAGTTGAAGAGAGAAAT 296 ϩ 12TϾC synt R T(15)GCATGAACATACCTTTCCAATTTTTC 359insT synt F T(15)TTTTTTTCTGGAGATTTATGTTCTAT 359insT synt R T(15)AAAAAAACATCGCCGAAGGGCATTAA E60X synt F T(15)TAGCTGGCTTCAAAGAAAAATCCTAA E60X synt R T(15)ATCTATCCCATTCTCTGCAAAAGAAT P67L synt F T(15)TTAAACTCATTAATGCCCTTCGGCGA P67L synt R T(15)AGATTTTTCTTTGAAGCCAGCTCTCT R74Q synt F T(15)AGCGATGTTTTTTCTGGAGATTTATG R74Q synt R T(15)TGAAGGGCATTAATGAGTTTAGGATT R75X synt F T(15)TGATGTTTTTTCTGGAGATTTATGTT R75X synt R T(15)ACCGAAGGGCATTAATGAGTTTAGGA W57X(TAG) synt F T(15)AGGATAGAGAGCTGGCTTCAAAGAAA W57X(TAG) synt R T(15)TATTCTCTGCAAAAGAATAAAAAGTG W57X(TGA) synt F T(15)AGATAGAGAGCTGGCTTCAAAGAAAA W57X(TGA) synt R T(15)TCATTCTCTGCAAAAGAATAAAAAGT G91R synt F T(15)AGGGTAAGGATCTCATTTGTACATTC G91R synt R T(15)TTAAATATAAAAAGATTCCATAGAAC 405 ϩ 1GϾA synt F T(15)ATAAGGATCTCATTTGTACATTCATT 405 ϩ 1GϾA synt R T(15)TCCCTAAATATAAAAAGATTCCATAG 405 ϩ 3AϾC synt F T(15)CAGGATCTCATTTGTACATTCATTAT 405 ϩ 3AϾC synt R T(15)GACCCCTAAATATAAAAAGATTCCAT 406 - 1GϾA synt F T(15)AGAAGTCACCAAAGCAGTACAGCCTC 406 - 1GϾA synt R T(15)TTACAAAAGGGGAAAAACAGAGAAAT E92X synt F T(15)TAAGTCACCAAAGCAGTACAGCCTCT E92X synt R T(15)ACTACAAAAGGGGAAAAACAGAGAAA E92K synt F T(15)AAAGTCACCAAAGCAGTACAGCCTCT E92K synt R T(15)TCTACAAAAGGGGAAAAACAGAGAAA 444delA synt F T(15)GATCATAGCTTCCTATGACCCGGATA 444delA synt R T(15)ATCTTCCCAGTAAGAGAGGCTGTACT 574delA synt F T(15)CTTGGAATGCAGATGAGAATAGCTAT 574delA synt R T(15)AGTGATGAAGGCCAAAAATGGCTGGG 621GϾA synt F T(15)AGTAATACTTCCTTGCACAGGCCCCA 621GϾA synt R T(15)TTTCTTATAAATCAAACTAAACATAG Q98P synt F T(15)CGCCTCTCTTACTGGGAAGAATCATA Q98P synt R T(15)GGTACTGCTTTGGTGACTTCCTACAA 457TATϾG synt F T(15)GGACCCGGATAACAAGGAGGAACGCT 457TATϾG synt R T(15)CGGAAGCTATGATTCTTCCCAGTAAG I148T synt F T(15)CTGGAATGCAGATGAGAATAGCTATG I148T synt R T(15)GTGTGATGAAGGCCAAAAATGGCTGG 624delT synt F T(15)CTTAAAGCTGTCAAGCCGTGTTCTAG 624delT synt R T(15)TAAGTCTAAAAGAAAAATGGAAAGTT 663delT synt F T(15)ATGGACAACTTGTTAGTCTCCTTTCC 663delT synt R T(15)CATACTTATTTTATCTAGAACACGGC G178R synt F T(15)AGACAACTTGTTAGTCTCCTTTCCAA G178R synt R T(15)TAATACTTATTTTATCTAGAACACGG Q179K synt F T(15)AAACTTGTTAGTCTCCTTTCCAACAA Q179K synt R T(15)TTCCAATACTTATTTTATCTAGAACA 711 ϩ 5GϾA synt F T(15)ATACCTATTGATTTAATCTTTTAGGC 711 ϩ 5GϾA synt R T(15)TTATACTTCATCAAATTTGTTCAGGT 712 - 1GϾT synt F T(15)TGGACTTGCATTGGCACATTTCGTGT 712 - 1GϾT synt R T(15)TATGGAAAATAAAAGCACAGCAAAAAC H199Y synt F T(15)TATTTCGTGTGGATCGCTCCTTTGCA H199Y synt R T(15)TATGCCAATGCTAGTCCCTGGAAAATA P205S synt F T(15)TCTTTGCAAGTGGCACTCCTCATGGG P205S synt R T(15)TAAGCGATCCACACGAAATGTGCCAAT L206W synt F T(15)GGCAAGTGGCACTCCTCATGGGGCTA L206W synt R T(15)TCAAGGAGCGATCCACACGAAATGTGC Q220X synt F T(15)TAGGCGTCTGCTTTCTGTGGACTTGG Q220X synt R T(15)TATAACAACTCCCAGATTAGCCCCATG 936delTA synt F T(15)AATCCAATCTGTTAAGGCATACTGCT 936delTA synt R T(15)TGATTTTCAATCATTTCTGAGGTAATC 935delA synt F T(15)GAAATATCCAATCTGTTAAGGCATAC 935delA synt R T(15)TATTTCAATCATTTCTGAGGTAATCAC N287Y synt F T(15)TACTTAAGACAGTAAGTTGTTCCAAT N287Y synt R T(15)TATTCAATCATTTTTTCCATTGCTTCT 1002 - 3TϾG synt F T(15)GAGAACAGAACTGAAACTGACTCGGA 1002 - 3TϾG synt R T(15)TCTAAAAAACAATAACAATAAAATTCA 1154insTC syntwt F T(15)ATCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntwt R T(15)TTGAGATGGTGGTGAATATTTTCCGGA 1154insTC syntmt F T(15)TCTCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntmt R T(15)TAGAGATGGTGGTGAATATTTTCCGGA DF311 mt syntV1 F T(15)CCTTCTTCTCAGGGTTCTTTGTGGTG dF311 mt syntV1 R T(15)GAGAAGAAGGCTGAGCTATTGAAGTATC G330X synt F T(15)TGAATCATCCTCCGGAAAATATTCAC G330X synt R T(15)ATTTGATTAGTGCATAGGGAAGCACA S364P synt F T(15)CCTCTTGGAGCAATAAACAAAATACA S364P synt R T(15)GGTCATACCATGTTTGTACAGCCCAG Q359K/T360K mt synt F T(15)AAAAAATGGTATGACTCTCTTGGAGC Q359K/T360K mt synt R T(15)TTTTTTACAGCCCAGGGAAATTGCCG 1078delT synt F T(15)CTTGTGGTGTTTTTATCTGTGCTTCC 1078delT synt R T(15)CAAGAACCCTGAGAAGAAGAAGGCTG 1119delA synt F T(15)CAAGGAATCATCCTCCGGAAAATATT 1119delA synt R T(15)CTTGATTAGTGCATAGGGAAGCACAG 1161delC synt F T(15)GATTGTTCTGCGCATGGCGGTCACTC 1161delC synt R T(15)TCAGAATGAGATGGTGGTGAATATTT T338I synt F T(15)TCACCATCTCATTCTGCATTGTTCTG T338I synt R T(15)ATGAATATTTTCCGGAGGATGATTCC R352Q synt F T(15)AGCAATTTCCCTGGGCTGTACAAACA R352Q synt R T(15)TGAGTGACCGCCATGCGCAGAACAAT L346P synt F T(15)CGCGCATGGCGGTCACTCGGCAATTT L346P synt R T(15)GGAACAATGCAGAATGAGATGGTGGT 1259insA synt F T(15)AAAAAGCAAGAATATAAGACATTGGA 1259insA synt R T(15)TTTTTGTAAGAAATCCTATTTATAAA W401X(TAG)mtsynt F T(15)AGGAGGAGGTCAGAATTTTTAAAAAA W401X(TAG)mtsynt R T(15)TAGAAGGCTGTTACATTCTCCATCAC W401X(TGA) synt F T(15)AGAGGAGGTCAGAATTTTTAAAAAAT W401X(TGA) synt R T(15)TCAGAAGGCTGTTACATTCTCCATCA 1342 - 2AϾC synt F T(15)CGGGATTTGGGGAATTATTTGAGAAA 1342 - 2AϾC synt R T(15)GGTTAAAAAAACACACACACACACAC 1504delG synt F T(15)TGATCCACTGTAGCAGGCAAGGTAGT 1504delG synt R T(15)TCAGCAACCGCCAACAACTGTCCTCT G480C synt F T(15)TGTAAAATTAAGCACAGTGGAAGAAT G480C synt R T(15)ACTCTGAAGGCTCCAGTTCTCCCATA C524X synt F T(15)ACAACTAGAAGAGGTAAGAAACTATG C524X synt R T(15)TCATGCTTTGATGACGCTTCTGTATC V520F synt F T(15)TTCATCAAAGCAAGCCAACTAGAAGA V520F synt R T(15)AGCTTCTGTATCTATATTCATCATAG 1609delCA synt F T(15)TGTTTTCCTGGATTATGCCTGGCACC 1609delCA synt R T(15)CAGAACAGAATGAAATTCTTCCACTG 1717 - 8GϾA synt F T(15)AGTAATAGGACATCTCCAAGTTTGCA 1717 - 8GϾA synt R T(15)TAAAAATAGAAAATTAGAGAGTCACT 1784delG synt F T(15)AGTCAACGAGCAAGAATTTCTTTAGC 1784delG synt R T(15)ACTCCACTCAGTGTGATTCCACCTTC A559T synt F T(15)ACAAGGTGAATAACTAATTATTGGTC A559T synt R T(15)TTAAAGAAATTCTTGCTCGTTGACCT Q552X synt F T(15)TAACGAGCAAGAATTTCTTTAGCAAG Q552X synt R T(15)AACCTCCACTCAGTGTGATTCCACCT S549R(AϾC) synt F T(15)CGTGGAGGTCAACGAGCAAGAATTTC S549R(AϾC) synt R T(15)GCAGTGTGATTCTACCTTCTCCAAGA S549R(TϾG) synt F T(15)GGGAGGTCAACGAGCAAGTATTTC S549R(TϾG) synt R T(15)CCTCAGTGTGATTCCACCTTCTCCAA L558S synt F T(15)CAGCAAGGTGAATAACTAATTATTGG L558S synt R T(15)GAAGAAATTCTCGCTCGTTGACCTCC 1811 ϩ 1.6 kb AϾG synt F T(15)GTAAGTAAGGTTACTATCAATCACAC 1811 ϩ 1.6 kb AϾG synt R T(15)CATCTCAAGTACATAGGATTCTCTGT 1812 - 1GϾA synt F T(15)AAGCAGTATACAAAGATGCTGATTTG 1812 - 1GϾA synt R T(15)TTAAAAAGAAAATGGAAATTAAATTA D572N synt F T(15)AACTCTCCTTTTGGATACCTAGATGT D572N synt R T(15)TTAATAAATACAAATCAGCATCTTTG P574H synt F T(15)ATTTTGGATACCTAGATGTTTTAACA P574H synt R T(15)TGAGAGTCTAATAAATACAAATCAGC 1833delT synt F T(15)ATTGTATTTATTAGACTCTCCTTTTG 1833delT synt R T(15)CAATCAGCATCTTTGTATACTGCTCT Table 4. Continued Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј Y563D synt F T(15)GACAAAGATGCTGATTTGTATTTATT Y563D synt R T(15)CTACTGCTCTAAAAAGAAAATGGAAA T582R synt F T(15)GAGAAAAAGAAATATTTGAAAGGTAT T582R synt R T(15)CTTAAAACATCTAGGTATCCAAAAGG E585X synt F T(15)TAAATATTTGAAAGGTATGTTCTTTG E585X synt R T(15)ATTTTTCTGTTAAAACATCTAGGTAT 1898 ϩ 5GϾT synt F T(15)TTTCTTTGAATACCTTACTTATATTG 1898 ϩ 5GϾT synt R T(15)AATACCTTTCAAATATTTCTTTTTCT 1924del7 synt F T(15)CAGGATTTTGGTCACTTCTAAAATGG 1924del7 synt R T(15)CTGTTAGCCATCAGTTTACAGACACA 2055del9ϾA synt F T(15)ACATGGGATGTGATTCTTTCGACCAA 2055del9ϾA synt R T(15)TCTAAAGTCTGGCTGTAGATTTTGGA D648V synt F T(15)TTTCTTTCGACCAATTTAGTGCAGAA D648V synt R T(15)ACACATCCCATGAGTTTTGAGCTAAA K710X synt F T(15)TAATTTTCCATTGTGCAAAAGACTCC K710X synt R T(15)ATCGTATAGAGTTGATTGGATTGAGA I618T synt F T(15)CTTTGCATGAAGGTAGCAGCTATTTT I618T synt R T(15)GTTAATATTTTGTCAGCTTTCTTTAA R764X synt F T(15)TGAAGGAGGCAGTCTGTCCTGAACCT R764X synt R T(15)ATGCCTGAAGCGTGGGGCCAGTGCTG Q685X synt F T(15)TAATCTTTTAAACAGACTGGAGAGTT Q685X synt R T(15)ATTTTTTTGTTTCTGTCCAGGAGACA R709X synt F T(15)TGAAAATTTTCCATTGTGCAAAAGAC R709X synt R T(15)ATATAGAGTTGATTGGATTGAGAATA V754M synt F T(15)ATGATCAGCACTGGCCCCACGCTTCA V754M synt R T(15)TGCTGATGCGAGGCAGTATCGCCTCT 1949del84 synt F T(15)AAAAATCTACAGCCAGACTTTATCTC 1949del84 synt R T(15)TTTTTAGAAGTGACCAAAATCCTAGT 2108delA synt F T(15)GAATTCAATCCTAACTGAGACCTTAC 2108delA synt R T(15)ATTCTTCTTTCTGCACTAAATTGGTC 2176insC synt F T(15)CCAAAAAAACAATCTTTTAAACAGACTGGAGAG 2176insC synt R T(15)GGTTTCTGTCCAGGAGACAGGAGCAT 2184delA synt F T(15)CAAAAAACAATCTTTTAAACAGACTGG 2184delA synt R T(15)GTTTTTTGTTTCTGTCCAGGAGACAG 2105-2117 del13 synt F T(15)AAACTGAGACCTTACACCGTTTCTCA 2105-2117 del13 synt R T(15)TTTCTTTCTGCACTAAATTGGTCGAA 2307insA synt F T(15)AAAGAGGATTCTGATGAGCCTTTAGA 2307insA synt R T(15)TTTCGATGCCATTCATTTGTAAGGGA W846X synt F T(15)AAACACATACCTTCGATATATTACTGTCCAC W846X synt R T(15)TCATGTAGTCACTGCTGGTATGCTCT 2734G/AT synt F T(15)TTAATTTTTCTGGCAGAGGTAAGAAT 2734G/AT synt R T(15)TTAAGCACCAAATTAGCACAAAAATT 2766del8 synt F T(15)GGTGGCTCCTTGGAAAGTGAGTATTC 2766del8 synt R T(15)CACCAAAGAAGCAGCCACCTGGAATGG 2790 - 2AϾG synt F T(15)GGCACTCCTCTTCAAGACAAAGGGAA 2790 - 2AϾG synt R T(15)CGTAAAGCAAATAGGAAATCGTTAAT 2991del32 synt F T(15)TTCAACACGTCGAAAGCAGGTACTTT 2991del32 synt R T(15)AAACATTTTGTGGTGTAAAATTTTCG Q890X synt F T(15)TAAGACAAAGGGAATAGTACTCATAG Q890X synt R T(15)AAAGAGGAGTGCTGTAAAGCAAATAG 2869insG synt F T(15)GATTATGTGTTTTACATTTACGTGGG 2869insG synt R T(15)CACGAACTGGTGCTGGTGATAATCAC 3120GϾA synt F T(15)AGTATGTAAAAATAAGTACCGTTAAG 3120GϾA synt R T(15)TTGGATGAAGTCAAATATGGTAAGAG 3121 - 2AϾT synt F T(15)TGTTGTTATTAATTGTGATTGGAGCT 3121 - 2AϾT synt R T(15)AGTAAGATCAAAGAAAACATGTTGGT 3132delTG synt F T(15)TTGATTGGAGCCATAGCAGTTGTCGC 3132delTG synt R T(15)AATTAATAACAACTGTAAGATCAAAG 3271delGG synt F T(15)ATATGACAGTGAATGTGCGATACTCA 3271delGG synt R T(15)ATTCAGATTCCAGTTGTTTGAGTTGC 3171delC synt F T(15)ACCTACATCTTTGTTGCAACAGTGCC 3171delC synt R T(15)AGGTTGTAAAACTGCGACAACTGCTA 3171insC synt F T(15)CCCCTACATCTTTGTTGCTACAGTGC 3171insC synt R T(15)GGGGTTGTAAAACTGCGACAACTGCT 3199del6 synt F T(15)GAGTGGCTTTTATTATGTTGAGAGCATAT 3199del6 synt R T(15)CCACTGGCACTGTTGCAACAAAGATG M1101K synt F T(15)AGAGAATAGAAATGATTTTTGTCATC M1101K synt R T(15)TTTTGGAACCAGCGCAGTGTTGACAG G1061R synt F T(15)CGACTATGGACACTTCGTGCCTTCGG G1061R synt R T(15)GTTTTAAGCTTGTAACAAGATGAGTG R1066L synt F T(15)TTGCCTTCGGACGGCAGCCTTACTTT R1066L synt R T(15)AGAAGTGTCCATAGTCCTTTTAAGCT R1070P synt F T(15)CGCAGCCTTACTTTGAAACTCTGTTC R1070P synt R T(15)GGTCCGAAGGCACGAAGTGTCCATAG L1077P synt F T(15)CGTTCCACAAAGCTCTGAATTTACAT L1077P synt R T(15)GGAGTTTCAAAGTAAGGCTGCCGTCC W1089X synt F T(15)AGTTCTTGTACCTGTCAACACTGCGC W1089X synt R T(15)TAGTTGGCAGTATGTAAATTCAGAGC L1093P synt F T(15)CGTCAACACTGCGCTGGTTCCAAATG L1093P synt R T(15)GGGTACAAGAACCAGTTGGCAGTATG W1098R synt F T(15)CGGTTCCAAATGAGAATAGAAATGAT W1098R synt R T(15)GGCGCAGTGTTGACAGGTACAAGAAC Q1100P synt F T(15)CAATGAGAATAGAAATGATTTTTGTC Q1100P synt R T(15)GGGAACCAGCGCAGTGTTGACAGGTA D1152H synt F T(15)CATGTGGATAGCTTGGTAAGTCTTAT D1152H synt R T(15)GTATGCTGGAGTTTACAGCCCACTGC R1158X synt F T(15)TGATCTGTGAGCCGAGTCTTTAAGTT R1158X synt R T(15)ACATCTGAAATAAAAATAACAACATT S1196X synt F T(15)GACACGTGAAGAAAGATGACATCTGG S1196X synt R T(15)CAATTCTCAATAATCATAACTTTCGA 3732delA synt F T(15)GGAGATGACATCTGGCCCTCAGGGGG 3732delA synt R T(15)CTCCTTCACGTGTGAATTCTCAATAA 3791delC synt F T(15)AAGAAGGTGGAAATGCCATATTAGAG 3791delC synt R T(15)TTGTATTTTGCTGTGAGATCTTTGAC 3821delT synt F T(15)ATTCCTTCTCAATAAGTCCTGGCCAG 3821delT synt R T(15)GAATGTTCTCTAATATGGCATTTCCA Q1238X synt F T(15)TAGAGGGTGAGATTTGAACACTGCTT Q1238X synt R T(15)AGCCAGGACTTATTGAGAAGGAAATG S1255X (ex19)synt F T(15)GTCTGGCCCTCAGGGGGCCAAATGAC S1255X (ex19) synt R T(15)CGTCATCTTTCTTCACGTGTGAATTC S1255X;L synt F T(15)AAGCTTTTTTGAGACTACTGAACACT S1255X;L synt R T(15)TATAACAAAGTAATCTTCCCTGATCC 3849 ϩ 4AϾG synt F T(15)GGATTTGAACACTGCTTGCTTTGTTA 3849 ϩ 4AϾG synt R T(15)CCACCCTCTGGCCAGGACTTATTGAG 3850 - 1GϾA synt F T(15)AGTGGGCCTCTTGGGAAGAACTGGAT 3850 - 1GϾA synt R T(15)TTATAAGGTAAAAGTGATGGGATCAC 3905insT synt F T(15)TTTTTTTGAGACTACTGAACACTGAA 3905insT synt R T(15)AAAAAAAGCTGATAACAAAGTACTCT 3876delA synt F T(15)CGGGAAGAGTACTTTGTTATCAGCTT 3876delA synt R T(15)CGATCCAGTTCTTCCCAAGAGGCCCA G1244V synt F T(15)TAAGAACTGGATCAGGGAAGAGTACT G1244V synt R T(15)ACCAAGAGGCCCACCTATAAGGTAAA G1249E synt F T(15)AGAAGAGTACTTTGTTATCAGCTTTT G1249E synt R T(15)TCTGATCCAGTTCTTCCCAAGAGGCC S1251N synt F T(15)ATACTTTGTTATCAGCTTTTTTGAGACTACTG S1251N synt R T(15)TTCTTCCCTGATCCAGTTCTTCCCAA S1252P synt F T(15)CCTTTGTTATCAGCTTTTTTGAGACT S1252P synt R T(15)GACTCTTCCCTGATCCAGTTCTTCCC D1270N synt F T(15)AATGGTGTGTCTTGGGATTCAATAAC D1270N synt R T(15)TGATCTGGATTTCTCCTTCAGTGTTC W1282R synt F T(15)CGGAGGAAAGCCTTTGGAGTGATACC W1282R synt R T(15)GCTGTTGCAAAGTTATTGAATCCCAA R1283K synt F T(15)AGAAAGCCTTTGGAGTGATACCACAG R1283K synt R T(15)TTCCACTGTTGCAAAGTTATTGAATC 4005 ϩ 1GϾA synt F T(15)ATGAGCAAAAGGACTTAGCCAGAAAA 4005 ϩ 1GϾA synt R T(15)TCTGTGGTATCACTCCAAAGGCTTTC 4010del4 synt F T(15)GTATTTTTTCTGGAACATTTAGAAAAAACTTGG 4010del4 synt R T(15)AAAATACTTTCTATAGCAAAAAAGAAAAGAAGAA 4016insT synt F T(15)TTTTTTTCTGGAACATTTAGAAAAAACTTGG 4016insT synt R T(15)AAAAAAATAAATACTTTCTATAGCAAAAAAGAAAAGAAGA CFTRdele21 synt F T(15)TAGGTAAGGCTGCTAACTGAAATGAT CFTRdele21 synt R T(15)CCTATAGCAAAAAAGAAAAGAAGAAGAAAGTATG 4382delA synt F T(15)GAGAGAACAAAGTGCGGCAGTACGAT 4382delA synt R T(15)CTCTATGACCTATGGAAATGGCTGTT Bold, mutation allele of interest; bold and italicized, modified nucleotide.
X
ABCC7 p.Leu1093Pro 16049310:150:10931
status: NEWX
ABCC7 p.Leu1093Pro 16049310:150:10977
status: NEW[hide] Novel Cystic Fibrosis mutation L1093P: functional ... Hum Mutat. 2000 Feb;15(2):208. Yee K, Robinson C, Hurlock G, Moss RB, Wine JJ
Novel Cystic Fibrosis mutation L1093P: functional analysis and possible Native American origin.
Hum Mutat. 2000 Feb;15(2):208., [PMID:10649505]
Abstract [show]
A novel mutation was detected using single-strand conformation polymorphism and heteroduplex analysis in a cystic fibrosis subject of mixed ancestry. Mutation 3410T-->C in exon 17b caused the novel missense mutation L1093P; the other chromosome has mutation N1303K. The 31-year-old subject is pancreatic insufficient, had an FEV(1) score that was 33% of normal prior to a heart/lung transplant, and sweat chloride values of 116 and 95 mM when tested at ages 1 and 11. Functional analysis using forskolin-stimulated efflux of (125)I in HEK cells transfected with an ABCC7 construct harboring the L1093P mutation confirmed that cAMP-mediated anion efflux was abnormal, but some function was preserved. Analysis of parental DNA established that N1303K was of English origin, while L1093P was of Greek, Irish or Native American (Cherokee) origin. Given the intensive screening for CF mutations in European populations, we hypothesize that L1093P is of Native American origin. Hum Mutat 15:208, 2000.
Comments [show]
None has been submitted yet.
No. Sentence Comment
5 Functional analysis using forskolin-stimulated efflux of 125 I in HEK cells transfected with an ABCC7 construct harboring the L1093P mutation confirmed that cAMP-mediated anion efflux was abnormal, but some function was preserved.
X
ABCC7 p.Leu1093Pro 10649505:5:126
status: NEW6 Analysis of parental DNA established that N1303K was of English origin, while L1093P was of Greek, Irish or Native American (Cherokee) origin.
X
ABCC7 p.Leu1093Pro 10649505:6:78
status: NEW7 Given the intensive screening for CF mutations in European populations, we hypothesize that L1093P is of Native American origin.
X
ABCC7 p.Leu1093Pro 10649505:7:92
status: NEW12 Preliminary evidence indicates that the L1093P mutation might be of Native American origin.
X
ABCC7 p.Leu1093Pro 10649505:12:40
status: NEW47 The subject is heterozygous for T/C at position 3410, resulting in L1093P.
X
ABCC7 p.Leu1093Pro 10649505:47:67
status: NEW51 The father was heterozygous for N1303K, and the mother for L1093P (Fig. 1a).
X
ABCC7 p.Leu1093Pro 10649505:51:59
status: NEW52 The N1303K mutation was paternal, and the L1093P mutation was maternal.
X
ABCC7 p.Leu1093Pro 10649505:52:42
status: NEW65 Exon 17b 1 2 3 4 5 B. C. -6 -4 -2 0 2 4 6 8 10 12 0.1 0.2 0.3 0.4 0.5 Wild-Type L1093P (T3410C) Vector Only EFFLUXRATE 30s EFFLUX INTERVALS (n) Physiological assay of the L1093P missense mutation.
X
ABCC7 p.Leu1093Pro 10649505:65:80
status: NEWX
ABCC7 p.Leu1093Pro 10649505:65:173
status: NEW66 To assess the anion channel function of CFTR harboring the L1093P mutation, HEK cells transiently expressing either plasmid alone, WT- ABCC7, or L1093P- ABCC7 were assayed for 125 I efflux in the absence and presence of forskolin. The extent to which the rate of efflux increases following forskolin is correlated with the number of active CFTR channels in the membrane (n), their open probability (Po), and their conductance (γ).
X
ABCC7 p.Leu1093Pro 10649505:66:59
status: NEWX
ABCC7 p.Leu1093Pro 10649505:66:145
status: NEW67 As shown in Fig. 1c, efflux from the L1093P mutation was significantly reduced relative to WT ABCC7, but was slightly but significantly elevated relative to vector alone.
X
ABCC7 p.Leu1093Pro 10649505:67:37
status: NEW70 The present mutation, L1093P, was found in association with N1303K in a pancreatic insufficient subject who had lung disease severe enough to require a transplant.
X
ABCC7 p.Leu1093Pro 10649505:70:22
status: NEW72 The clinical phenotype and our physiological data indicate that L1093P should also be considered a severe mutation, yet it does retain some function, in contrast with mutations such as ∆F508-ABCC7 and G551D-ABCC7 that are indistinguishable from vector controls in this assay.
X
ABCC7 p.Leu1093Pro 10649505:72:64
status: NEW73 Dysfunction of L1093P.
X
ABCC7 p.Leu1093Pro 10649505:73:15
status: NEW74 The basis of the dysfunction of L1093P was not determined.
X
ABCC7 p.Leu1093Pro 10649505:74:32
status: NEW75 L1093P occurs in the part of exon 17b, residues 1035-1102, that forms the 4th intracellular loop of ABCC7(Cotton et al. 1996; Seibert et al. 1996).
X
ABCC7 p.Leu1093Pro 10649505:75:0
status: NEW81 Possible Native American Origin of L1093P.
X
ABCC7 p.Leu1093Pro 10649505:81:35
status: NEW85 The L1093P mutation was maternal.
X
ABCC7 p.Leu1093Pro 10649505:85:4
status: NEW86 Previous comprehensive screenings of European populations have not detected the L1093P mutation.
X
ABCC7 p.Leu1093Pro 10649505:86:80
status: NEW88 Because of the high sensitivity of DGGE, which is essentially 100% when optimized (Gejman et al. 1998), these figures indicate that the L1093P mutation, if present in these populations, probably accounts for < 0.2% of CF mutations.
X
ABCC7 p.Leu1093Pro 10649505:88:136
status: NEW89 Therefore, we consider the alternative hypothesis that L1093P might be of Native American origin.
X
ABCC7 p.Leu1093Pro 10649505:89:55
status: NEW[hide] The Transmission Interfaces Contribute Asymmetrica... J Biol Chem. 2015 Jul 3;290(27):16954-63. doi: 10.1074/jbc.M115.652602. Epub 2015 May 18. Loo TW, Clarke DM
The Transmission Interfaces Contribute Asymmetrically to the Assembly and Activity of Human P-glycoprotein.
J Biol Chem. 2015 Jul 3;290(27):16954-63. doi: 10.1074/jbc.M115.652602. Epub 2015 May 18., [PMID:25987565]
Abstract [show]
P-glycoprotein (P-gp; ABCB1) is an ABC drug pump that protects us from toxic compounds. It is clinically important because it confers multidrug resistance. The homologous halves of P-gp each contain a transmembrane (TM) domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Each NBD is connected to the TMDs by a transmission interface involving a pair of intracellular loops (ICLs) that form ball-and-socket joints. P-gp is different from CFTR (ABCC7) in that deleting NBD2 causes misprocessing of only P-gp. Therefore, NBD2 might be critical for stabilizing ICLs 2 and 3 that form a tetrahelix bundle at the NBD2 interface. Here we report that the NBD1 and NBD2 transmission interfaces in P-gp are asymmetric. Point mutations to 25 of 60 ICL2/ICL3 residues at the NBD2 transmission interface severely reduced P-gp assembly while changes to the equivalent residues in ICL1/ICL4 at the NBD1 interface had little effect. The hydrophobic nature at the transmission interfaces was also different. Mutation of Phe-1086 or Tyr-1087 to arginine at the NBD2 socket blocked activity or assembly while the equivalent mutations at the NBD1 socket had only modest effects. The results suggest that the NBD transmission interfaces are asymmetric. In contrast to the ICL2/3-NBD2 interface, the ICL1/4-NBD1 transmission interface is more hydrophilic and insensitive to mutations. Therefore the ICL2/3-NBD2 transmission interface forms a precise hydrophobic connection that acts as a linchpin for assembly and trafficking of P-gp.
Comments [show]
None has been submitted yet.
No. Sentence Comment
315 The NBD2 transmission interface was also found to be particularly important for CFTR assembly as processing mutations in other domains that cause cystic fibrosis (such as èc;F508 in NBD1, G91R in TMD1, L1093P in TMD2) were found to impair the conformational stability of NBD2 (54).
X
ABCC7 p.Leu1093Pro 25987565:315:206
status: NEW